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1 Introduction and Restatement of the Problem

Many public facilities have signs posted in large public rooms, such as lobbies
and conference halls, that specify the maximum number of people that the space
may be occupied by. Presumably, this number is based on the speed with which
people could be evacuated from the structure in an emergency. Elevators and
other facilities, such gymnasiums and swimming pools, also have “maximum
capacities” posted, which are based on similar criteria.

In deciding what number to put on such a sign, one must consider two
important factors. The most obvious is that of safety: what must the maximum
capacity of a structure be in order to minimize the time that it takes every
occupant of the building to exit without sustaining injury? Another important
issue is that of comfort: how many people can be fit in a room, during a given
interval, before the room becomes overheated or the carbon dioxide level in the
room rises significantly above normal?

Our analysis considers each of the above two issues, which we will call the
“emergency problem” and the “comfort problem,” for different structures and
spaces.

We will present two models as possible solutions to the emergency problem,
both of which gives a method for determining the minimum time 7' it takes
N people to exit a specified structure. Conversely, we will use these methods
to determine the maximum number of people N who can exit a structure in a
given period of time 7. For the comfort problem, we will give estimates of the
maximum number N people that can comfortably occupy a given space for a
period of time 7.

To avoid ambiguity, we will use the following definitions:

e A “structure” is an assortment of interconnected spaces, each of which
leads to at least one other space or an exit.

e An “emergency” is a situation that poses sufficient potential or actual
harm to the well being of the group within a structure to require its
complete evacuation.
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e The assumption of “orderly movement” states that no personal injuries or
other accidents occur that affect the minimum time 7' taken to evacuate
N people from a given structure.

e A “panic” 1s a situation in which the assumption of orderly movement
does not hold.

e A room i1s “comfortable” if the quality of its air i1s acceptable and its
temperature falls within a specified range.

2 Further Considerations

One difficulty in developing a model for the emergency problem is deciding how
different types of emergencies affect the rate at which people can exit a given
structure. A bomb threat and a fire are both pressing reasons to evacuate a
building, for instance, but the imminent danger that smoke inhalation poses to
the occupants of a structure is greater than the knowledge that, five hours later,
a bomb may or may not explode in their vicinity. Likewise, a bomb threat called
in five minutes before detonation could cause a panic that, in an overcrowded
room, might leave many people injured in the rush to exit whether or not the
threat is real. The dynamics of the exiting processes for each of these situations,
naturally, will present distinctly different modeling situations.

In addressing the emergency problem, we first consider the case where the
assumption of orderly movement holds, and then extend our analysis to what
might happen in a panic, where accidents and personal injuries occur that slow
the rate of movement within the structure and increase the minimum evacuation
time for a group of N people.

3 Assumptions and Hypotheses

The following assumptions were made in tackling the emergency problem:

e The people in our models are a uniform, average adult weight of between
100 and 300 lbs, and are of approximately the same size.

e There are no “security guards” or similar individuals responsible for reg-
ulating the evacuation of the structures in our models. That is, every
individual has the desire to exit the structure as quickly as possible, and
employs the same process for deciding the best route by which to do so.

e The ceilings in our rooms are assumed to be of normal height and the
uppermost floors of our structures are not located extremely distant from
ground level (i.e. they are not crawl spaces and they are not located at
the top of skyscrapers).

e The time it takes for a person to move from one room to another is negli-
gible compared to the time it takes to evacuate all people out of a room.
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e The room is situated in a modern building in a town or city. In other
words, we do not expect our results to be applicable to submarines, space
stations, or other unusual structures.

4 Personal Space Constraints

The simplest constraint on the capacity of any room is space. Each person
requires about one square meter (9 square feet) to stand and be able to move
around comfortably. So if a room is designed for standing or sitting in an upright
chair, an upper bound on the room’s capacity is given by dividing its area less
any area occupied by furniture by one square meter.

Special cases, such as a rock concert or elevator, in which people are willing
to stand closer together can be accomodated by dividing by a smaller amount
of personal space, say, 0.75 or 0.5 of a square meter.

5 Evacuation Models

Evacuation models answer these questions:
e Given a room full of people, how long will it take for them to exit?

e What is the risk that someone will be injured during the evacuation? (By
being trampled, left in the building, etc.)

e In an emergency, how long do people have to get out of the room?

To answer these questions, we developed several models of the evacuation of
a room based on different assumptions about how people move through doors,
and what kinds of emergencies are likely to force an evacuation.

5.1 The Constant Rate Model

The constant rate model for room evacuation 1s based on the following assump-
tions:

e A door will let people through at a constant flow rate, for example, one
person per second.

e The time it takes for a person to get in line at a door i1s assumed to be
negligible compared to the time it takes to evacuate the room.

e To simplify the model, we assume that doors do not become blocked during
the evacuation.

e People are crowded around each door. Until the room is almost empty,
there are enough people standing close to the door to use 1t to its full
capacity. When someone exits, the crowd pushes forward to fill up the

gap.
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e People select a door based on what they can see in the room around
them and attempt to minimize the time it will take them to exit. More
specifically, they tend to go either to the nearest door, or to the door
which will allow them to exit the fastest.

First, we analyze a room containing only people, and add furniture later. Sim-
ilarly, we initially ignore the possibility of a panic to simplify the problem.

5.1.1 Single Room with One Door

Suppose we have a single room with one door. In this case, everyone will try
to exit through that door. There will always be enough people at the door to
use 1t to its capacity. Thus, if the door allows people through at a rate of r and
there are n people in the room, it will take
n
t= —

r

(1)
time for the room to empty.

5.1.2 Single Room with Multiple Doors

If the room has multiple doors, each person will initially adopt a strategy of
going toward the nearest door. If it becomes clear that one crowd is moving
faster than the others, people at the end of slow lines will move to the end of
the fast line. In this way, all the doors will be crowded until the room is empty.
Suppose there are k doors with flow rates r1,...,rg and ny, ..., ng people exit
through the doors, respectively. If the line at one door looks like it will finish
before the others, people will move from the end of their line to the end of the
faster line. Thus, all the lines finish at the same time, yielding
ni na Nk

1 2 Tk ()

If we let n be the sum of the n;, we have
n=1tri +trs+ ... +1rg.

Defining r to be the total number of people divided by the total time of evacu-
ation and substituting yields

n
r:?:rl—i—rz—l—...—l—rk. (3)
This equation states that a room with many doors leading out is equivalent to

a room with a single larger door whose flow rate is the sum of the rates of all
the smaller doors.
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5.1.3 Subroom and Corridor Decomposition

Until now, we have been dealing with an empty room. Now we consider furniture
and other obstacles.

First, imagine a dining room with a large number of tables and chairs. See
Figure 1. In this case, the furniture restricts people to certain paths as they
try to exit, but the assumptions of the open room model still hold. People can
generally move in whatever direction they want, there is always a crowd at each
door, and each door is able to flow at maximum capacity. It is the combined
flow rate of all the doors that determines the evacuation time, as in Equation

3.
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Figure 1: A dining room, view from above.

1
1

Alternatively, obstacles can divide a room into smaller rooms and corridors,
which requires a significantly different model. For example, consider a small
lecture hall with rows of seats, a table, and several doors. See Figure 2. If
people had to leave, they would most likely walk between the chairs rathern
than leap over them. So, the single room is broken up by the furniture into
smaller “subrooms” and “corridors,” as shown in Figure 3. This situation is
different from the dining hall because the furniture more severly restricts the
directions people can move in. A person in the hall must first exit a row of
seats, then go down one of the outside aisles. If one end of one of the aisles
were blocked, it would take longer for the last person on that aisle to exit the
room. In the dining hall, a blocked passageway is less critical because there are
so many other passages.

Once a room has been broken up into subrooms and corridors, it is useful to
think of them each as being separate rooms with doors connecting them, and
the evacuation problem becomes one of evacuating a whole complex, not just
one room. The lecture hall becomes the diagram in Figure 4. The diagram
can be simplified somewhat by combining doors that lead to the same place as
in Equation 3. In this case, simple inspection shows that once again the exit
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Figure 2: A lecture hall, view from above.

Figure 3: Same hall, gray areas denote corridors of movement.
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doors can operate at maximum capacity the whole time, so the time it takes to
evacuate the room is determined entirely by their combined flow rate.

Figure 4: Same hall, schematic diagram of subrooms. Circles represent sub-
rooms, lines represent passage from one subroom to the next, and ground sym-
bols represent doors leading to the outside. Each subroom is marked with how
many people are in it, and each connection is marked with how many people per
second can flow through it. Ground symbols indicate exits that lead completely
out of the complex.

For a more complex example, consider the cafeteria floor plan shown in
Figure 5.! Most of the rooms are connected by open arches that function as
doors with large flow rates. It reduces to the schematic diagram shown in Figure
6. Here it is not so clear that the flow rate of the four exit doors determines
the evacuation time although some simulations described in the appendix and a
method of analysis described in Section 5.1.4 show that this is in fact the case.
If we had a large room connected to a lobby by a single, small door, and a large
door connecting the lobby to the outside, the evacuation time would be more
dependent on the flow of people into the lobby. In other words, sometimes a
small interior door 1s a bottle neck, and sometimes it is not. For a complicated
network like the cafeteria, whether or not there is an interior bottleneck is not
immediately apparent.

5.1.4 Maximum Flow Model

The evacuation problem for a complex of rooms can be solved if we think about
it differently by ignoring the actual number of people in the rooms. Suppose
people are constantly flowing out of the complex, and are coming into existence

I This is based on an actual building on campus.
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Figure 5: A large cafeteria, view from above.

Figure 6: Same cafeteria, schematic.
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on the inside at the same rate. Think of them falling out of the ceiling as fast as
people exit. The rooms will all have a constant number of people in them since
they are replaced at the same rate they leave. This problem is one of finding
the flow rate of people through a complex.

There is an algorithm for finding the maximum flow through a graph, called
the Ford-Fulkerson algorithm. Although tricky to implement, it i1s simple in
concept. Suppose we have a directed graph and each connection has a known
maxiumum capacity, in this case, people per second that can pass through a
crowded door. One of the nodes is designated the “source” (people falling from
the ceiling) and another is designated the “sink” (the outside). We assign to each
connection an amount indicating the actual flow through it. Such an assignment
can be improved if there is a path from source to sink in which the flow through
every connection can be increased. An assignment is maximal if there is no such
path. The Ford-Fulkerson algorithm looks at all possible paths until there are
no more improvements to be made.

The time for n people to leave the building can be estimated by dividing »
by the maximum flow. To use the Ford-Fulkerson algorithm on a room graph
to determine this flow, we must add two nodes. First, a source is connected to
all rooms with lines of infinite capacity. Second, a sink node representing the
outside is connected to all exits from the complex with connection capacities
equal to those of the exit doors.

For a continuation of the cafeteria example, see Figure 7. This graph is
marked with a maximum flow. It cannot be improved because all the connec-
tions leading to the sink are at their maximum. It confirms that the rate of
evacuation 1s determined by the flow rate of the exit doors, in other words,
there are no internal bottlenecks. The same technique can be applied to any
room graph.

=D

2 /v, Il N
, -

Figure 7: A large dining hall, graph for Ford-Fulkerson algorithm. The 4+ node
represents the source and the bull’s eye represents the sink.
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6 Quadratic Rate Model

6.1 Motivation for the Quadratic Model

While the constant rate model is useful, the assumption that the rate at which
people move through doors in an emergency is constant is subject to scrutiny.
One idea that has been proposed to improve on this model is the linear rate
model, which states that the rate at which people can exit a room, f(¢), is
bound by a linear function of the number of people in the room. The evacuation
problem can be stated, in terms of the linear rate model, as:

T
maximize /0 f(s)ds (4)

which is the number of people that can evacuate in time 7'
T
subject to 0 < f(t) < a/ f(s)ds+b, for0<t < T (5)
t

In the above constraint, the integral ftT f(s)ds = fOT f(s)ds — fot f(s)ds
represents the total number of people evacuated after time 7" minus the number
of people who have been evacuated up to the point of time ¢; in other words, it
denotes the number of people in the room at time ¢.

The linear model represents the situation where the number of people in the
room has a “forcing” effect on the flow rate through the exits. This is modeled
by the constant a; the greater a is, the greater the forcing effect is. The constant
b represents the normal rate of flow provided that the forcing effect is negligible.
Provided people are exiting the room in an efficient and orderly manner, the
linear model hypothesizes that the maximum flow rate out of the room increases
as the number of people in the room increases.

As the author of the paper suggesting this model acknowledges, the linear
capacity function model does not represent the fact that for sufficiently large
flows, the capacity function representing the upper bound of the flow rate should
decrease to zero. (See [3].) He stipulates further that, since this decrease occurs
only at the upper end of the range of flows, the linear bound model should result
in “no lack of realism.”

We reasoned, however, that the evacuation dynamics of an emergency call
for an upper bound model that takes large flow values into consideration—for
when, other than an emergency or a panic, would such large flow values occur,
and more importantly, when would the question of evacuation time be more
crucial?

6.2 Developing the Quadratic Model

To this end, we pose a model that assumes the upper bound of the flow rate
to be a quadratic function of the number of people in the room at time ¢. The
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evacuation problem, using the quadratic model, can be stated as follows:

T
maximize /0 f(s)ds (6)

. 2
subject to 0< f(t)<q—r (/ f(s)ds—p) ,for0<t < T (7)
t

In the above equation, the maximum flow rate ¢ occurs when the room is
occupied by some optimal capacity p people. The motivation for the quadratic
rests on two assumptions: 1) The upper bound decreases when the number of
people in the room is substantially less than p because the time it takes people
to walk to and through the exit becomes non-negligible compared to the total
time required to evacuate all people from the room. 2) Conversely, when the
number of people in the room noticeably exceeds p, the jostling, discomfort, and
limitation of movement that occurs reduces the flow rate through the exits.

The value of the constant p for a given room depends on its floor space A
in square feet and a critical density d, which is the value in people per square
foot beyond which impediment to motion increases and flow efficiency decreases.
The value of p can be computed by the equation p = Ad. In our discussion of
the quadratic model, we assume that d = 0.75. What the exact value of d should
be, of course, is open to interpretation. We consider this problem briefly in our
suggestions for further study at the end of the paper.

The other constant of importance in the quadratic model is r, which is
somewhat, but not entirely, analogous to the constant @ in the linear model.
At this point, it makes sense to rewrite the constraint of Equation 6 as the
following:

17 ’
0<f(t)<q—rp2(1——/ f(s)ds) ,for0<t<T (8)
PJy

With this formulation, it follows that the constant a 1s roughly the same
order of magnitude as the quantity rp?. We will see shortly that this makes
sense 1n the context of an example.

To solve the evacuation problem using the quadratic model, we will assume
that maximum flow occurs. The constraint in Equation 6 thus becomes

f(t):q—r(/o f(s)ds—/of(s)ds—p) O0<t<T (9)

Differetiating both sides twice with respect to ¢ leads to the following differ-
ential equation:

FrOFE) - F@7 + 2 f(t)* =0 (10)
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With a little help from MAPLE, and using the initial values f(T') = ¢ — rp®
and f'(T) = 0, we get the following solution for the flow rate out of the room
at time t:

_ q—rp’ 1
J(t) (cos((t—T)( /_—qr—l—rzpz))) (11)

From this result, we can compute the maximum number of people N who
can exit the room in a time interval 7"

— tan (T r(—q+ rpz)) (—q +rp?)
r(—q + rp?)

N(T) = /0 F(tydt = (12)

Using the above, we can solve directly for the the minimum time 7" it would
take N people to exit a structure:

arctan(—N r(—q+7‘p2))
—q+rp?

T(N) = (

r(—q+rp?) "

Equations 12 and 13 are the main results of our analysis using the quadratic
model. They allow us to address two of the main questions raised in 5—namely,
how long it takes N people to evacuate a building and how many people can be
evacuated from a building in time 7T'.

6.3 The Relevance of the Quadratic Model to Emergengy
Dynamics and “Panic”

The above results bring us to an important point. At the beginning of the paper,
we made the distinction between a “panic” and the “assumption of orderly
flow.” In a panic, it is assumed that some people will sustain injury, fall down,
or disrupt the flow of the crowd in some related way. The justification we have
presented for the quadratic model, in the case where the number of people in the
room exceeds the optimal value p, assumes something similar: people packed
together at a density greater than the critical density will slow each other down
in their attempt to evacuate a room. Essentially, therefore, we are assuming
that the difference between the impediments to flow caused by crowding and
the impediments caused by panic is one of degree. This supposition is reflected
in the fact that the quadratic bound for the maximum flow rate as a function
of the number of people in the room is concave down, which represents the fact
that every additional person added to a crowd in a given room poses a slightly
greater obstacle to efficient evacuation.

Page 12 of 19



Team 243

To illustrate the predictions of the quadratic model for a normal example,
suppose the optimum flow rate ¢ = 6 people per minute, the number of people
at which optimum flow occurs p = Ad = (1000)(0.75) = 750 people in a room
of size A = 1000 square feet, and 7" = 6 minutes in which to evacuate as
many people as possible. For purposes of comparison, we will also compute the
number of people who can exit in this time predicted by the linear rate model
with b = ¢ = 6 and @« = .01. We will take the value of r for the quadratic rate
model to be a/p* = .01/(750%) = 1.8 x 1078.

Doing so yields N (6) = 540 for the quadratic model and N (6) = 557 for the
linear model. It makes sense that these numbers are not too far apart, since
we are not dealing with an extreme case where the number of people evacuated
from the room greatly exceeds or undercuts the critical value p. More to the
point, it seems that when p does not deviate significantly from Ad, this will be
usually be the case. However, if we set p, for example, to 107° and compute
the above example with all other things held constant, we get N(6) = 501
for the quadratic model. By setting p = 107% we get N(6) = 195. The
difference in these predictions demonstrates the effect that increasing p has on
the maximum number of people who can be evacuated in a given time predicted
by the quadratic model. Rather than forcing people out at a higher rate, as
the linear model predicts, the quadratic model suggests that a “forcing effect”
caused by the efforts of a packed crowd to evacuate a building in a hurry may
actually decrease the total number of people evacuated by causing injuries and
inefficient flow.

6.4 Limitations of the Quadratic Model and Further Con-
siderations

Like the linear model, the quadratic model has some important limitations.
One is that it is designed to model the evacuation of a space, rather than an
entire structure. In our simulation, however, we have managed to apply the
quadratic model to a cafeteria on our campus with results that agree with those
obtained by the constant rate model. Unfortunately, we did not have the time
to compare the predictions of the quadratic rate model and the constant rate
or linear model by simulating a “panic” situation in the cafeteria. One further
extension of our project would be to simulate a variety of panic situations using
the quadratic rate model, the linear model, and the constant rate model and
compare the results. Ideally, the quadratic rate model should yield evacuation
times for panic situations that are noticeably less than those predicted by the
other two models.

Another problem that became apparent in applying the quadratic model to
our cafeteria i1s that when the number of people in the room is significantly less
than the value of p, the simulated people would not go through the exits. This
was remedied by using a constant rate model when the number of people in the
room dropped below 10 and switching to the quadratic rate model when the
number of people in the room was above 10.

In our model, we estimated the values of p and d. Since the results given by
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our model depend heavily on these two constants, it is important to find ways of
estimating them more accurately. This problem presents a number of different
possibilities for further study that we will mention briefly in the conclusion.

6.5 How Long is Long Enough?

We have models for how long it takes a certain number of people to evacuate a
room or complex; and if it were given that all the people had to be out by time ¢,
it is a matter of back-solving and perhaps some trial and error to determine the
largest number n of people that can escape. The difficult part is determining ¢.

In most cases, t is completely unpredictable. For example, someone might
call in a bomb threat and give insufficient warning (maybe fifteen seconds) for
more than a fraction of a room to be evacuated. Presumably a bomber intending
for people to escape would give reasonable warning. Otherwise there would be
no warning at all, in which case there is nothing we can do.

In the case where the air in a room is being polluted with toxins, a fairly
good estimate can be made of {. Given a room of volume V, the amount
N of air molecules is given by the gas law PV = NRT, where P is pressure
(1 atmosphere), T is the room temperature in Kelvins, and R is the gas constant.
Most toxins of note are lethal in small amounts, so we may assume the pressure
is constant. Denote by r the rate in moles per second of toxin being created,
and by ¢ the fraction of the air which is toxic. Then:

et o o= ()(2) a8

Under room temperature and one atmosphere, % =414 1;11—‘3,1 Substituting for
q the lethal concentration of the toxin yeilds ¢.

For a fire, which is far more likely for most rooms, we have a “back-of-
the-napkin” calculation for how long the room will fill up with the toxin COs.
Consider a wood fire. A rough estimation based on camp fires gives that 1 kg of
wood combusts in 15 min or so into 0.25 kg of CO», 0.25 kg of water vapor, and
0.5 kg of ashes. Dividing by the molecular mass of COa2, we get that combustion
of wood creates about r = % mol of CO3 per minute per kilogram of wood, and
t comes out to be 600 s per cubic meter of volume divided by the number of
kilograms of fuel. For example, a room 6 m by 12 m by 3 m polluted by the
smoke from 100 kg of burning wood reaches 8% of COs in 21 minutes. This
estimate is very rough and should be improved to take into consideration the
heat and change of pressure over time. Furthermore, the room will become very
uncomfortable far before it becomes deadly, so 21 minutes 1s an overestimate ¢.

For reference, a room that size can hold perhaps 100 people, and if there is
one door operating at one person per second, the room can be evacuated in less
than two minutes using the constant rate model.

The example cafeteria has a volume of around 15000 cubic meters, and by
the above estimate, it would take 9000 s for it to reach 8% CO» if a ton of wood
were to burn inside, which is 2.5 hours. By our estimate it can be evacuated in
2.5 minutes.
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7 Ventillation Models

The comfort level of people in a room is another consideration for the maximum
capacity. According to our research, the following atmospheric conditions worth
considering in determining a legal capacity for a crowded room.

e The temperature of the room should be between 65 and 90 degrees Faren-
heit. In particular, the ventillation system should be able to dissipate the
heat produced by the bodies of the people inside.

e The amount of various toxins in the atmosphere should be kept to harm-
less levels. The only one likely to apply to all situations is carbon dioxide
(CO3) which is produced naturally by human respiration. It is recom-
mended (in [2]) that the CO3 level should be below 0.1%. Tt must be kept
below 8%, a level which can be fatal.

e If smoking is allowed in a room, additional circulation must be allowed
for.

According to an air conditioning manual ([2]), human bodies produce heat
at a rate of 60 Watts when asleep to 600 Watts when undergoing strenuous
activity. Moderate activity yields about 100 Watts. The rate at which a room
dissipates heat depends upon its insulation, what sort of windows it has, and
the power of any air conditioner that flows through it, and must be determined
on a case by case basis. Rooms such as auditoriums which are used for several
hours at a time should be able to dissipate 100 Watts per person so that the
temperature remains roughly constant.

A certain amount of fresh air is recommended in [2], at least 0.2 liters per
second per person. Fresh air dilutes the COs concentration and unpleasant
odors. If smoking is allowed in a room, 25 liters per second per person are
recommended.

In a tight, enclosed space, the CO; produced naturally by human respiration
becomes important. According to [1], a normal human breath is about 500 ccs,
4.1% of which is CO,, and the breath takes 4 seconds or so. Thus humans
produce CO5 at a rate of 5 x 1072 mol per second. Equation 14 in Section 6.5
can be used to estimate the time the room can safely be inhabited with a given
occupancy.

Consider for example an elevator 3 m by 3 m by 3 m carrying 12 people
that becomes stuck and is somehow completely air-tight. The people take up
about half its volume. Using Equation 14, it takes about 150 minutes, two and
one-half hours, for the COs level to reach 8%. Here, the capacity of the elevator
might be limited by the time it takes to get a rescue crew in to open it up. In
a city, such a rescue should not take more than a few minutes. Elevators are
usually well-vented anyway, so CO4 build-up will normally not be a significant
constraint.

The manual [2] also states that the fraction of oxygen in the air can be al-
lowed to decrease fairly significantly (down to 13%) before it becomes dangerous,
so the presence of toxins is the limiting factor.
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8 Swimming Pools

In the case of an indoor swimming pool, evacuation is basically the same as for
an open room. People can exit the pool itself on all sides, except for weaker
swimmers who may have to use a ladder. They should be able to flow through
the exit doors as described in Section 5.

In the case of an outdoor swimming pool, evacuation is not much of a con-
sideration. Outdoor pools are evacuated mostly to avoid lightning, and there is
usually sufficient warning.

In both cases, personal space is the most important safety issue. In the
water, people must move their arms and legs over a greater range of motion to
maneuver than is needed for walking on land. Many swimming strokes limit a
swimmer’s vision and make collisions more lilkely. Some swimmers have to wear
floats, which take up additional space.

For swimming pools, we recommend that the area of the pool be divided by
3 square meters per person (giving each swimmer one meter in all directions to
move) to determine the capacity. A large space should left open around diving
boards and slides, perhaps a circle of 4 meters,

9 Capacities for Elevators

Elevators usually have very wide doors and only carry a few people at once.
Thus, evacuation time is negligible in case of an emergency. (The real time
constraint will be getting the people down the stairs and out of the building,
which is similar to the room problem.) As mentioned in Section 7, the amount
of fresh air available to a small, enclosed place can place some limitation on the
number of people who can stay inside for long periods of time. For elevators,
this is only a factor if it gets stuck and rescue teams take more than two hours
to cut a hole in the wall.

The most important factors would seem to be weight and space. Elevators
usually have a weight limit which is supplied by the manufacturer, and a simple
elbow-room constraint which can be calculated by dividing the floor area by
0.5 square meters per person.’

10 Article for the Newspaper

There are many important considerations when determining the maximum oc-
cupancy of a room. We all realize the desire to fit as many persons into a room
as possible; but we also must consider the safety of those occupants. A building
filled past its maximum occupancy becomes a modern day Titanic, trapping
victims inside its walls.

2The case of an elevator seems fairly straightforward, so we spent most of our time working
on rooms and complexes.
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Our model has been rigorously tested. We consider both the comfort of the
occupants and their ability to leave quickly in an emergency. Comfort is a fairly
straightforward measure, allowing for personal space and sufficient ventilation.
Building evacuation is far more complex.

With building evacuation, we had to consider the possibility of panic along
with the time it takes to evacuate under more structured conditions. Our model
takes this into accounts, and provides quite excellent predictions of the time
in which various numbers of occupants could leave a building. Our model is
derived analytically from common sense and first principles, but butressed by
actual data. The values of predicted constants have been determined by careful
comparison with actual data gathered, ensuring that our model matches the
real world. The model gives a good match to other previously used methods of
calculating maximum capacity as well.

There is always room for disagreement of course, as some may feel that
our calculations allow for too little capacity. We stand behind our calculations.
Since our model predicts capacities similar to those posted currently for existing
buildings, it seems reasonable. It would be always possible to increase the
capacity by increasing the time to evacuate, but that is not always acceptable.
We predict based on evacuation times less than ten minutes, which we feel
i1s quick enough for most emergencies, and agrees with our calculations and
experience. It strikes a good balance between getting occupants out quickly
and allowing as many as possible to enjoy the building.

11 Conclusion

11.1 Strengths and Weaknesses

On the whole, our models are fairly robust, and the quadratic model is a more
realistic modeling tool than the linear bound model, since it more accurately
simulates panic. Unfortunately, we did not have time to test them on as many
actual structures as we would have liked. The quadratic model, additionally,
yields questionable results for large values of room occupancy. Hopefully, the
model could be modified with more simulations on existing structures.

11.2 Recommendations

There are a number of different possibilities for further study presented by
our models. For the quadratic model, we could extend an analysis of how to
determine the value of p to a more comprehensive understanding of how the
“forcing effect” operates to slow the evacuation of a panicked crowd. Also, we
could develop techniques for measuring the value of the critical density d, such
as observing how many people can evacuate a building in different time intervals
T, and using that data to estimate the critical value at which maximum flow
occurs.
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For improving our analysis of the comfort problem, we could develop ways
to better estimate the time a room takes to become overheated our stuffy.

A The Computer Simulation of Evacuation

To test the evacuation times of complexes of rooms, we wrote a simulation
engine in Python. It represents rooms connected by doors. Object oriented
programming techniques allow us to use diferent kinds of doors (always open,
sometimes blocked, variable flow rate, etc.) and different strategies of selecting
a path out of the building with the same structural models. Each door has a
queue of people standing around, waiting to get through. Each time step, all
the doors “warp” some number of people into the next room. Then, everyone
standing in line is given the opportunity to move to a different line based on their
perception of the room. A special room object is designated the “outside” and
throws an exception to halt the simulation when a specified number of people
have arrived outside. A class diagram for the simulation is given in Figure 8.

Person

A
/\

EZPerson PanicPerson
‘ CafeteriaSimulation‘

‘ ShortestWaitPerson ‘

OpenDoor ‘ ‘ QuadRateDoor ‘ ‘ NormalRoom‘ ‘ Outside

Figure 8: Class diagram of the simulation in abbreviated UML. Triangles indi-
cate inheritance. Hairline arrows indicate “creates.”
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