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Abstract. Children reliably learn their community’s language; consequently human languages4
are relatively stable on short time scales. However, languages can change dramatically over the course5
of centuries, and once begun, such changes generally run monotonically to completion. We consider6
a stochastic model that reproduces this pattern of fluctuations via large deviations. We begin with7
a Markov chain that represents an age-structured population in which children learn which of two8
grammars their community prefers, but are aware of age-correlated usage patterns and will use the9
dispreferred grammar more often if they infer that its use is spreading. The Markov chain is shown10
to converge in the limit of an infinite population to a stochastic differential equation that generalizes11
the Wright-Fisher SDE for population genetics. This proof is not routine because the dynamics are12
only defined in a Cartesian product of simplexes, and it must be verified that trajectories of the13
SDE cannot escape. Results are proved by changing variables in a way that expands each simplex14
to an entire plane, yielding reasonable constraints on the dynamics that ensure that a standard but15
sophisticated theorem for well-posedness of SDEs can be applied. The SDE yields a phase portrait16
that reveals the mechanism that causes these models to produce sporadic, monotone, population-17
wide transitions between grammars. A further simplification results in a stochastic functional-delay18
differential equation that shows how population-level memory effects and the attempt by learners to19
avoid sounding outdated results in prediction-driven instability.20
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1. The paradox of language change. A primary tool in the field of linguis-24
tics is the idealized grammar, that is, a formalism that distinguishes correctly formed25
utterances from ill-formed utterances [8, 17]. Historically, much of the research on26
how children acquire their native language has focused on how they might choose one27
idealized grammar from many innate possibilities on the basis of example sentences28
from the surrounding society [1, 57, 60]. From the perspective of idealized grammar,29
language change is paradoxical: Children acquire their native language accurately and30
communicate with adults from preceding generations, yet over time, the language can31
change drastically. Some changes may be attributed to an external event, such as32
political upheaval, but not every instance of language change seems to have an ex-33
ternal cause. Despite their variability, languages do maintain considerable short-term34
stability, consistently accepting and rejecting large classes of sentences for centuries.35
The primary challenge addressed by the model discussed in this article is to capture36
this meta-stability.37

Many existing models of language learning in a population focus on character-38
izing stable properties of languages. For example, naming games and other lexi-39
cal models focus on the process by which a population forms a permanent consen-40
sus on a vocabulary, and how effective that vocabulary is at representing meanings41
[9, 23, 49, 50, 51, 56, 61]. Related models focus on the structure of lexeme or42
phoneme inventories once a stable equilibrium is reached [22, 21, 66]. Several al-43
gorithms have been proposed as models for the acquisition of idealized grammars44
[5, 6, 7, 14, 21, 22, 44, 43, 60]. These focus on details of the acquisition process45
and follow the probably almost correct (PAC) learning framework [15], in which the46
learner’s input is a list of grammatically correct utterances called the primary lin-47
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guistic data (PLD), and the learner is required to choose a single idealized grammar48
from a limited set that is somehow maximally consistent with that input. Learners49
are given no data on social structure, or any negative evidence, that is, information50
stating that a possible utterance is ungrammatical. The input may be from a single51
individual [21, 22] or a population, perhaps consisting of adults that collectively use52
several idealized grammars [43]. Other proposed algorithms address the sensitivity53
of the PAC framework to noise in the PLD by including means of ignoring rarely54
occurring constructions [28, 29, 54, 65].55

There is room to improve on these models. In contrast to actual human lan-56
guage, these models typically have stable equilibrium states from which the learner57
or population cannot escape. Furthermore, PAC learning algorithms typically make58
use of the subset principle: Out of all the available idealized grammars, the “correct”59
choice is the one that generates the smallest set of utterances including the input. The60
subset principle is frequently included in language learning models because children61
typically ignore assertions by adults that a particular utterance is ungrammatical.62
However, there is evidence that the subset principle does not accurately reproduce63
certain features of child language acquisition, and that children make use of statistical64
patterns in adult speech to determine that utterances they previously accepted are65
actually ungrammatical [39, 4].66

Many language models for populations are adapted from deterministic, continu-67
ous, biological population models and represent language by communication games.68
These focus on stable behavior in an infinite homogeneous population, although some69
exhibit ongoing fluctuations [40, 33, 41, 34, 35, 37, 48, 46, 47, 45, 53]. Some are70
designed to represent a single change [24]. In these models, children learn from an71
average of speech patterns, and except for [41], these do not model the origins of72
language changes directly. Instead, an external event must disturb the system and73
push it from one stable state to another.74

As we will see in section 2, a general mean-field model in which children learn75
from the entire population equally does not lead to spontaneous change, even in the76
presence of random variation. It appears that spontaneous changes can only arise77
from random fluctuations in combination with some sort of momentum driven by78
social structure.79

Based on extensive field studies, Labov [26] proposes a model in which phonetic80
change is driven by females who naturally change their individual speech over time,81
a force called incrementation. A semi-structured approach as in [36] assumes a fully82
interconnected finite population but agents vary in their influence on learners. These83
models approximate the time course of a single change, in qualitative agreement with84
data, but neither addresses the origin of the change.85

Some models use network dynamics rather than a mean-field assumption and86
allow learners to collect input disproportionately from nearby members of the popu-87
lation [12, 59]. These models incorporate observations made by Labov and others that88
certain individuals tend to lead the population in adopting a new language variant,89
and the change spreads along the friendship network [25, 26, 27].90

In contrast, the model analyzed in this article is built from an alternative perspec-91
tive in an attempt to resolve the language change paradox. Utterances may be drawn92
from multiple idealized grammars and classified as more or less archaic or innovative.93
Such an approach can consider the variation present in natural speech and model it94
as a stochastic grammar, that is, a collection of similar idealized grammars, each of95
which is used randomly at a particular rate [24, 25, 26, 62]. From this continuous96
perspective, language change is no longer a paradox, but acquisition requires more97
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than selecting a single idealized grammar as in the PAC framework. Instead, children98
must learn multiple idealized grammars, plus the usage rates and whatever conditions99
affect them.100

Crucially, instead of limiting learners’ input to example sentences, we will assume101
that children also know something about the ages of speakers and prefer not to sound102
outdated. They bias their speech against archaic forms by incorporating a prediction103
step into their acquisition of a stochastic grammar, which introduces incrementation104
without directly imposing it as in [26]. The age structure and bias against archaic105
forms introduce momentum into the dynamics, which generates the desired meta-106
stability. The population tends to hover near a state where one idealized grammar107
is highly preferred. However, children occasionally detect accidental correlations be-108
tween age and speech, predict that the population is undergoing a language change,109
and accelerate the change. This feature will be called prediction-driven instability.110

The majority of the language modeling literature does not focus on the formal111
aspects of mathematical models, such as confirming that the dynamics are well-posed112
or deriving a continuous model as the limit of a discrete model, even though such113
details are known to be generally important [11]. Numerical simulations of the discrete114
form of the age-structured stochastic model developed in this article confirm that it115
has the desired behavior [38] but its continuous form has yet to be placed on a sound116
theoretical foundation. So, in section 2 we formulate a discrete mean-field model as a117
Markov chain and discuss its weaknesses. Then in section 3, we extend it to include118
age-structure, then rigorously consider the limit of an infinitely large population and119
reformulate the Markov chain as a continuous-time martingale problem.120

We rewrite this martingale problem as a system of stochastic differential equations121
(SDEs), show that it has a unique solution for all initial values, and show that paths122
of the Markov chain converge weakly to solutions of the SDEs. The proofs make use of123
theorems in [10] for the existence and uniqueness of solutions to SDEs and convergence124
of discrete Markov chains to such solutions. However, the SDEs of interest take125
values in a phase space consisting of Cartesian products of simplexes, and changes-126
of-variables are required to derive SDEs taking values in a plane as required by the127
standard theorems. Furthermore, the drift and volatility terms in the resulting SDEs128
grow too quickly in magnitude at infinity for the most commonly used theorems to129
be directly applied. Instead, asymptotic estimates must be used to verify that the130
drift terms push solutions back toward the origin, in which case a more general result131
presented in [10] guarantees the existence of unique solutions for all time. These132
results confirm that solutions to the SDEs are at no risk of straying into unrealistic133
territory where the usage rate of some grammar has escaped from [0, 1]. Furthermore,134
they make minimal assumptions about the vector field and are applicable to other135
dynamical systems on simplexes.136

In the two dimensional case, in which agents use one grammar or the other exclu-137
sively, it is possible to see in the phase portrait that proximity of stable equilibria to138
the boundaries of their basins of attraction is what facilitates spontaneous language139
change. A final modification to the two-dimensional SDEs allows them to be reformu-140
lated as a one-dimensional functional-delay SDE. In this form, it becomes clear that141
the population switches from one meta-stable state to another when children detect a142
chance fluctuation in the usage rate of the dominant grammar away from the running143
average, and amplify it.144

2. First stage: An unstructured mean-field model. Let us suppose initially145
that individuals have a choice between two similar idealized grammars G1 and G2.146
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Each simulated agent uses G2 in forming an individual-specific fraction of spoken147
sentences, and G1 in forming the rest. Assume that children are always able to acquire148
both idealized grammars and the only challenge is learning the usage rates. Assume149
that the population consists of N adult agents, each of which is one of K + 1 types,150
numbered 0 to K, where type k means that the individual uses G2 at a rate k/K and151
G1 at a rate 1− k/K. The state of the chain at time step j is a vector T where Tn(j)152
is the type of the n-th agent. Define the count vector C where Ck(j) is the number153
of agents of type k,154

Ck(j) =
∑
n

1(Tn(j) = k) .155

Dividing the count vector by the population size yields the speech distribution vector156
X = C/N such that an agent selected at random from the population uniformly at157
time j is of type k with probability Xk(j).158

The mean usage rate of G2 at step j is therefore159

(1) M(j) =

K∑
k=0

(
k

K

)
Xk(j)160

Children are assumed to learn the usage rates of the two grammars based only on161
M(j), the mean usage rate of G2 in the adult population at time j. Children are162
assumed to be exposed to enough sample utterances from across the entire population163
to accurately estimate M(j). The model requires a mean learning function q(m) that164
gives the mean usage rate of children learning from a population with a mean rate m.165

The transition process from step j to j+1 is as follows. Two additional parameters166
are required, a birth-and-death rate rD and a resampling rate rR. At each time step,167
each individual agent is examined and one of these three operations is randomly168
applied to it:169

• With probability pD = rD/N it dies and is replaced.170
• With probability rR it is resampled.171
• With probability 1− pD − rR it is unchanged.172

Details are given in the following subsections.173

2.1. Time, learning, and the birth-death operation. Each time step is174
interpreted as 1/N years. The lifespan of an individual in time steps has a geometric175
distribution with parameter pD. The average life span is therefore 1/pD time steps176
or 1/rD years.177

When an agent dies, a replacement agent is created and its type is selected at178
random based on a discrete distribution vector Q(M(j)). That is, Qk(m) is the179
probability that a child learning from a population with mean usage rate m is of type180
k, and therefore uses G2 at rate k/K. As a specific example, Q(m) could be the mass181
function for a binomial distribution with parameters q(m) and K,182

(2) Qk(m) =

(
K

k

)
q(m)k(1− q(m))K−k.183

Since the mean of such a distribution is q(m)K, it follows that q and Q satisfy the184
identity185

(3) q(m) =

K∑
k=0

(
k

K

)
Qk(m)186
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which confirms that q(m) is indeed the mean usage rate of G2 by children learning187
from adults with mean usage rate m.188

The mean learning function must be S-shaped to ensure that there are two equi-189
librium states, representing populations dominated by one grammar or the other. In190
general, q is assumed to be smooth, strictly increasing, with one inflection point, and191

0 < q(0) < 1/2

1/2 < q(1) < 1
(4)192

In practice, q(0) will be close to 0 and q(1) will be close to 1. A curved mean learning193
function means that the more commonly used idealized grammar becomes even more194
commonly used, until the other grammar all but disappears. This tendency is in195
agreement with the observation that children regularize language: A growing body196
of evidence [19] indicates that for the task of learning a language with multiple ways197
to say something, adults tend to use all the options and match the usage rates in the198
given data, but children prefer to pick one option and stick with it. Beyond these199
general properties, this learning model makes no attempt to directly represent the200
neurological details of language acquisition, although researchers are exploring this201
area [2, 20, 39, 55, 65].202

2.2. Resampling of adults. When an agent is resampled, its new state is copied203
from another agent picked uniformly at random. The average time an agent spends204
between resamplings is 1/rR time steps. This feature of the transition process incor-205
porates the fact that as an adult, an individual’s language is not entirely fixed [26, 25].206
Furthermore, as will be explained in section 4, without this resampling feature, the207
random fluctuations of this Markov chain diminish to 0 in the limit as N → ∞, which208
would defeat the purpose of developing a stochastic model. This consideration leads209
to the peculiar fact that in formulating the Markov chain, pD must scale as 1/N but210
the probability rR of an agent being resampled must remain constant. The Wright-211
Fisher model [10] includes a similar feature: In the discrete formulation, each time212
step is considered a single generation and each agent is always resampled, akin to213
setting rR = 1, but when passing to the limit N → ∞, the generation time is taken214
to scale as 1/N without scaling the resampling process.215

It is possible that in contrast to standard practice in the population genetics216
literature, rD should also scale as 1/N . That would cause fluctuations in grammar217
use to shrink as the population size grows, in agreement with anecdotal reports that218
languages spoken by only a small number of native speakers change rapidly compared219
to those with larger populations, but in disagreement with other studies [63, 64].220
Resolution of this issue is beyond the scope of this article.221

2.3. Behavior of the model. This Markov chain is regular. Although it spends222
most of its time hovering near a state dominated by one idealized grammar or the223
other, it must eventually exhibit spontaneous language change by switching to the224
other. However, computer experiments confirm that under this model, a population225
takes an enormous amount of time to switch dominant grammars. This model is226
therefore unsuitable for understanding language change on historical time scales. A227
further undesirable property is that when a population does manage to shift to an228
intermediate state, it is just as likely to return to the original grammar as to complete229
the shift to the other grammar. Historical studies [24, 65] show that language changes230
typically run to completion monotonically and do not reverse themselves partway231
through (but see [62] for some evidence to the contrary), so again this model is232
unsatisfactory.233
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3. Second stage: An age-structured model. One way to remedy the weak-234
nesses of these mean-field models is to introduce social structure into the population.235
According to sociolinguistics, ongoing language change is reflected in variation, so236
there is reason to believe children are aware of socially correlated speech variation237
and use it during acquisition [25].238

There are many ways to formulate a socially structured population, and not all239
formulations apply to all societies. For this article, let us assume that there are240
two age groups, roughly representing youth and their parents, and that children can241
detect systematic differences in their speech. We also assume that there are social242
forces leading children to avoid sounding out-dated.243

Let us adapt the Markov chain from section 2 to include age structure. To rep-244
resent the population at time j, fix the total number of youth and the total number245
of parents at N , so there are 2N agents total. To make the notation systematic,246
superscript labels Y and A will be used, referring to the youth and adult generations,247
respectively. Let TY

n (j) be the type of the n-th youth and TA
n (j) be the type of the248

n-th adult, all between 0 and K. Define CY
k (j) to be the number of youth of type k,249

and define CA
k (j) to be the number of adults of type k. Let250

(5) XY =
1

N
CY and XA =

1

N
CA251

be the probability distribution vectors of the two generations. Assume that apart from252
age, children make no distinction among individuals. Thus, they learn essentially from253
the mean usage rates of the two generations,254

MY (j) =
K∑

k=0

(
k

K

)
XY

k (j)

MA(j) =

K∑
k=0

(
k

K

)
XA

k (j)

(6)255

The modified transition process from time j to j + 1 is as follows. Each adult is256
examined:257

• With probability pD = rD/N it is replaced to simulate death and aging.258
• With probability rR it is resampled from the adult population.259
• With probability 1− pD − rR it is unchanged.260

Each youth is examined:261
• With probability pD = rD/N it is replaced to simulate birth and aging.262
• With probability rR it is resampled from the youth population.263
• With probability 1− pD − rR it is unchanged.264

Each time step is interpreted as 1/N years. The number of time steps spent by an265
individual in each age group has a geometric distribution with parameter pD. The266
average time spent as an adult and as a youth is therefore 1/pD time steps or 1/rD267
years, so the average life span is now 2/rD.268

When an agent is resampled, its new state is copied from another agent from the269
same generation selected uniformly at random. As before, resampling leaves the mean270
behavior unchanged while introducing volatility.271

It is certainly possible to incorporate birth, aging, and death into the model by272
deleting an adult, directly moving someone from the youth generation to the adult273
generation, and creating a new youth. However, the calculations are simplified if birth274
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and death are handled separately, resulting in mathematically trivial differences to275
the Markov chain.276

When an adult dies, rather than moving a youth, a replacement is created by277
sampling from an aging distribution V

(
XY

)
, that is very close to XY but gives278

at least a minimal probability to every type. This feature allows for innovation in279
adults, and avoids a technical problem that would cause the model to fall outside the280
hypotheses of Lemma 4.6. The examples in this article use281

(7) Vk(X) = Xk(1− (K + 1)η) + η282

with η = 1/1000.283
For birth and aging, a randomly selected youth is deleted, and a replacement284

youth is created based on the discrete probability vector R(MY (j),MA(j)). Here,285
R(x, y) represents the acquisition process, together with prediction: Children hear286
that the younger generation uses G2 at a rate x, and the older generation uses a rate287
y. Based on x and y and any trend those numbers indicate, they predict a rate that288
their generation should use, and learn based on that predicted target value. Let the289
predicted mean usage rate be given by a smooth function r(x, y) that is increasing290
with respect to x, decreasing with respect to y, and satisfies291

∀x, y : y < x =⇒ x < r(x, y)292

and293

∀x, y : y > x =⇒ x > r(x, y).294

That is, any trend from the past y compared to the present x should continue to295
the future r(x, y). Then, our assumptions on learning based on prediction can be296
incorporated into the mathematics by setting R(x, y) = Q(r(x, y)).297

For a specific example, let us consider a population of 1000 agents, 500 in each298
age group, with a birth-death rate of rD = 1/20. Therefore, the mean lifespan of299
an agent is 40 years. The resampling rate is rR = 0.0001. There are 6 types of300
agents, representing speech patterns that use G2 for a fraction 0, 1/5, . . . , 1 of spoken301
sentences.302

The learning distribution Q(m) is a binomial distribution with parameters q(m)303
and 5. The example q in this article is304

(8) q(m) =
1

32
+

3600

751

(
33m

1280
+

161m2

320
− m3

3

)
305

This polynomial was constructed to be slightly asymmetric and strictly increasing on306
[0, 1]. Its range is [1/32, 31/32], so it satisfies (4) and conditions that will be needed307
to apply Proposition 4.1.308

The example prediction function r(x, y) is based on an exponential sigmoid. Given309
s(t) = 1/(1 + exp(−t)), define t1 = s−1(x) and t2 = s−1(y). Then h = t1 − t2 is a310
measure of the trend between the generations. A scale factor α is applied to h, and311
the scaled trend is added to t1. After some simplification,312

(9) r0(x, y) = s(t1 + αh) =
1

1 +
(
1−x
x

)α+1( y
1−y

)α313

For the example calculations in this paper, α = 3. Observe that r0 is a rational314
function, defined and continuous everywhere in [0, 1] × [0, 1] except at the corners.315
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Fig. 1. The learning-prediction function q(r(x, y)) and the plane given by the graph of (x, y) 7→ x.
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Fig. 2. Trajectory of the mean usage rate MY (t) of G2 in the young generation from a sample
path of the age-structured Markov chain. Left: The path from time 0 to 1000 years, showing several
changes between G1 (low) and G2 (high). Right: The path from time 75 to 250 years, showing a
single grammar change.

This definition may be smoothly extended to include r0(1, 0) = 1 and r0(0, 1) = 0,316
but no extension is possible to (0, 0) and (1, 1). To remedy this, we will assume that317
agents have slightly imperfect perception and introduce318

(10) w(x) =
1

2
+ (1− δ)

(
x− 1

2

)
319

which maps [0, 1] to [δ/2, 1− δ/2]. Pictures in this article will use δ = 1/1000. Thus320
a suitable prediction function that is defined and smooth on all of [0, 1]× [0, 1] is321

(11) r(x, y) = r0
(
w(x), w(y)

)
.322

The combined mean learning-prediction function q(r(x, y)) is plotted in Figure 1.323
An important feature is that since q(0) > 0 and q(1) < 1, the graph is slightly above324
the plane given by (x, y) 7→ x along the edge where x = 0, and is slightly below that325
plane along the edge where x = 1. This means that given an initial condition where326
one of the idealized grammars is not used at all, there is a non-zero probability that327
it will appear spontaneously.328

This model turns out to exhibit the desired properties. The population can spon-329
taneously change from one language to the other and back within a reasonable amount330
of time, and once initiated the change runs to completion without turning back.331
See Figure 2 for a graph of the mean usage rate of G2 among the younger age group332
as a function of time for a typical run of this Markov chain.333
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4. Diffusion limit. To better understand why spontaneous change happens in334
this model, we develop a continuous limit for the Markov chain governing the speech335
distributions XY and XA of the younger and older generations, respectively, which336
are points in the open simplex,337

SK =

{
(x0, . . . , xK)

∣∣∣∣∣ xk ∈ (0, 1),

K∑
k=0

xk = 1

}
.338

In the limit as the population size N increases without bound, the Markov chain339
(XY (j), XA(j)) : N → SK × SK ought to converge to the solution (ξY (t), ξA(t)) :340
[0,∞) → SK × SK of a martingale problem. To formulate it, we must calculate the341
infinitesimal drift and covariance functions.342

4.1. Notation. To reduce notational clutter in this subsection, all time-dependent343
quantities at time step j will be written without a time index, as in TY

n , CY
k , and344

XY
k . The learning distribution Q(r(MY ,MA)) will be written as just Q, and the345

aging distribution V (XY ) will be written as just V . Time-dependent quantities at346
time step j + 1 will be written with a bar, as in T̄Y

n , C̄Y
k , and X̄Y

k . Expectations and347
variances with a j subscript are conditioned on the information available at time step348
j.349

4.2. Infinitesimal mean and variance. Conditioning on time step j, 1
(
T̄Y
n = k

)
350

is a Bernoulli random variable that takes on the value 1 with probability351

g(n, k) = (1− pD − rR)1
(
TY
n = k

)
+ pDQk + rRX

Y
k352

that is, either TY
n = k and it didn’t change, or it died and was replaced by a child of353

type k, or it was resampled and became type k. With this observation, the mean and354
variance of C̄Y

k conditioned on information known at time step j can be calculated as355
follows.356

(12) Ej

(
C̄Y

k

)
=
∑
n

g(n, k) = (1− pD)CY
k + pDNQk357

358

Varj
(
C̄Y

k

)
=
∑
n

g(n, k)− g(n, k)2

= (1− pD − rR)C
Y
k + pDNQk + rRNXY

k

− (1− pD − rR)
2
CY

k

− 2 (1− pD − rR)C
Y
k

(
pDQk + rRX

Y
k

)
−N

(
pDQk + rRX

Y
k

)2
(13)359
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If m 6= n then T̄Y
m and T̄Y

n are conditionally independent given the information avail-360
able at time j + 1. If h 6= k then 1

(
T̄Y
n = k

)
1
(
T̄Y
n = h

)
= 0. Therefore,361

Cov j
(
C̄Y

k , C̄Y
h

)
=
∑
n

Cov j
(
1
(
T̄Y
n = k

)
,1
(
T̄Y
n = h

))
= −

∑
n

g(n, k)g(n, h)

= −

(
(1− pD − rR)C

Y
k

(
pDQh + rRX

Y
h

)
+ (1− pD − rR)C

Y
h

(
pDQk + rRX

Y
k

)
+N

(
pDQk + rRX

Y
k

) (
pDQh + rRX

Y
h

))
(14)362

It follows that363

(15) Ej

(
X̄Y

k −XY
k

1/N

)
= rD(Qk −XY

k ),364

which gives the infinitesimal drift component for a martingale problem. We also need365
an estimate of the covariance matrix for XY :366

Varj
(
X̄Y

k

)
=

1

N
(2rR − r2R)

(
XY

k −
(
XY

k

)2)
+O

(
1

N2

)
(16)367

Covj
(
X̄Y

k , X̄Y
h

)
= − 1

N
(2rR − r2R)X

Y
k XY

h +O

(
1

N2

)
(17)368

369

Similar drift and covariance formulas can be derived for XA,370

Ej

(
X̄A

k −XA
k

1/N

)
= rD(Vk −XA

k )(18)371

Varj
(
X̄A

k

)
=

1

N

(
2rR − r2R

) (
XA

k −
(
XA

k

)2)
+O

(
1

N2

)
(19)372

Covj
(
X̄A

k , X̄A
h

)
= − 1

N
(2rR − r2R)X

A
k XA

h +O

(
1

N2

)
(20)373

374

As a further simplification, we can rescale time by a factor of rD. This finally375
yields the infinitesimal drift function376

b : SK × SK → R2K377
378

(21) b

(
ξY

ξA

)
=

(
bY

bA

)
=

(
Q− ξY

V − ξA

)
379

and the infinitesimal covariance function ε2A380

A : SK × SK → M (R, 2K × 2K)381
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382
(22)

A

(
ξY

ξA

)
=

(
AY 0
0 AA

)
=



ξY1 −
(
ξY1
)2 −ξY1 ξY2 . . .

−ξY1 ξY2
. . .

...

0

0

ξA1 −
(
ξA1
)2 −ξA1 ξ

A
2 . . .

−ξA1 ξ
A
2

. . .
...


383

and384

(23) ε =

√
2rR − r2R

rD
=

√
1− (1− rR)2

rD
385

It can be verified by direct calculation that A is positive definite. The dimensions386
given here use the convention that ξY0 and ξA0 are omitted from the dynamics. They387
will not be considered independent variables because of the population size constraints388

ξY0 = 1−
(
ξY1 + · · ·+ ξYK

)
ξA0 = 1−

(
ξA1 + · · ·+ ξAK

)(24)389

The drift function can be augmented by defining390

bY0 = −
K∑
j=1

bYj and bA0 = −
K∑
j=1

bAj391

so that deterministic dynamics under the vector field on RK+1 × RK+1 defined by392
the augmented b preserve (24).393

If the resampling feature is removed by setting rR = 0, then ε = 0 and the394
dynamics become deterministic. The resampling feature can also be removed from395
just the older generation by zeroing out AA, or from just the younger generation by396
zeroing out AY .397

4.3. Convergence to system of SDEs. The discrete time Markov chain de-398
fined in section 3 converges to a system of stochastic differential equations (SDEs) in399
the limit as the population size N → ∞ and the physical time of a transition step400
goes to 0. The time associated with step j of the Markov chain is t = j/N , so to401
properly express the convergence of the Markov chain to a process in continuous time402
and space, we need the auxiliary processes X̂Y and X̂A that map continuous time to403
discrete steps,404

X̂Y (t) = XY (bNtc)
X̂A(t) = XA(bNtc)

(25)405
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12 W. GARRETT MITCHENER

The limiting initial value problem for
(
ξY , ξA

)
∈ SK ×SK is built from the infinites-406

imal vector field (21) and covariance matrix (22):407

dξYk (t) = bY (ξY , ξA) dt+ εσY (t) dBY (t)

ξY0 = 1−
K∑

k=1

ξYk

dξAk (t) = bA(ξY , ξA) dt+ εσA(t) dBY (t)

ξA0 = 1−
K∑

k=1

ξAk

ξY (0) = ξYinit

ξA(0) = ξAinit

(26)408

Here BY and BA are independent K-dimensional Brownian motions, and σY and σA409
are the unique positive-definite, symmetric square-roots of AY and AA. There is no410
general closed form for σY and σA, but the theory turns out to only require AY and411
AA.412

Proposition 4.1. Suppose
(
X̂Y (0), X̂A(0)

)
converges to

(
ξYinit, ξ

A
init

)
as N →413

∞. Suppose (bY , bA) satisfies the hypotheses of Proposition 4.8. The then for each414

ε0 > ε > 0, the process
(
X̂Y (t), X̂A(t)

)
converges weakly as N → ∞ to the solution415

to (26).416

Proof. We apply theorem 7.1 from Chapter 8 of [10] as follows. The calcula-417
tions (15), (16), and (17) in section 4 verify that the step-to-step drift, variances,418
and covariances of the Markov chain converge to the corresponding functions in the419
SDE (26) as the time step size 1/N goes to zero. The remaining condition to check420
is Durrett’s hypothesis (A), which is that the martingale problem associated to the421
SDE is well posed. The SDE has pathwise-unique strong solutions, as we will prove in422
Proposition 4.8. That implies uniqueness in distribution [10, §5.4 theorem 4.1] which423
implies that the martingale problem is well posed [10, §5.4 theorem 4.5] which implies424
the desired convergence.425

The commonly referenced theorem for existence and uniqueness of solutions to426
initial value problems for SDEs (see [52, theorem 5.2.1], for example) is not sufficient427
for (26). It applies to dynamics on Euclidean space, but the dynamics of interest428
here are restricted to SK × SK . We can change variables to expand the simplices to429
whole spaces, but then the global Lipschitz property and global growth constraints430
required by that theorem are not met. We must therefore apply more general theorems431
from [10] instead.432

4.4. Change of variables. First, we deal with phase space, as (26) only makes433
sense for (ξY , ξA) ∈ SK ×SK . We change variables so as to push the boundary of the434
phase space off to infinity. Since the formulas are exactly parallel for each generation,435
the generation label superscripts will be omitted where possible. To further conserve436
space, let γ = 1/(K + 1). Each vector ξ ∈ SK is mapped to a vector λ,437

(27) λk = ξ̃ (ξk − γ)438
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where439

(28) ξ̃ =

(
K∏

k=0

ξk

)−γ

440

The interior of the simplex expands to the entire plane441 {
λ ∈ RK+1

∣∣∣∣∣
K∑

k=0

λk = 0

}
.442

Let us also define443

(29) ξmin = min
k

ξk ξmax = max
k

ξk λmin = min
k

λk λmax = max
k

λk444

Note that the extrema for ξk and λk occur at the same value of the index k. Since445 ∑K
k=0 ξk = 1, it follows immediately that446

(30) ξmin ≤ γ ≤ ξmax λmin ≤ 0 ≤ λmax447

Furthermore, since λmin = ξ̃(ξmin − γ),448

(31) ξ̃ =
−λmin

γ − ξmin
> −λmin(K + 1)449

Lemma 4.2. The change of variables is smooth and smoothly invertible provided450
none of the ξk’s are zero, although the inverse does not have a closed form.451

Proof. To prove the existence of the inverse, note that if there is a solution for452
the ξk’s in terms of λk’s, it must hold that453

ξ̃−(K+1) =

K∏
k=0

ξk =

K∏
k=0

(
ξ̃−1λk + γ

)
= ξ̃−(K+1)

K∏
k=0

(
λk + γξ̃

)
454

Thus f(ξ̃) = 1 where f is the polynomial455

(32) f(x) =

K∏
k=0

(λk + γx)456

Assuming that the λk’s are known, note that f (−λmin(K + 1)) = 0, and for x >457
−λmin(K + 1), f(x) is product of strictly positive terms, all of which are strictly458
increasing in x, and it is unbounded as x → ∞. There is therefore a unique solution459
to f(x) = 1 with x > −λmin(K+1). Let ξ̃ be this solution, and recover ξk = ξ̃−1λk+γ.460
This change of variables is smooth and locally Lipschitz, but not globally Lipschitz461
because each partial derivative (40) is unbounded as ξj → 0.462

Several additional inequalities relating ξ and λ will be required. First, to avoid463
confusion about whether the 0th element of a vector is included in a dot product or464
magnitude, let us define465

‖v‖2 =

K∑
k=1

v2k ‖v‖20 =

K∑
k=0

v2k = ‖v‖2 + (v0)
2(33)466

u · v =

K∑
k=1

ukvk u� v =

K∑
k=0

ukvk(34)467
468
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14 W. GARRETT MITCHENER

For a general vector v = (v0, . . . , vK)
T, with extreme elements vmin and vmax, it is469

elementary to verify that470

(35) ‖v‖20 − v2max ≤ ‖v‖2 ≤ ‖v‖2 + v2min ≤ ‖v‖20 ≤ ‖v‖2 + v2max ≤ 2 ‖v‖2471

Lemma 4.3.

(36) ξ̃ ≤ 1− λmin

γ
≤

1 + ‖λ‖0
γ

≤ 1 +
√
2 ‖λ‖
γ

472

Proof. From the definition of ξ̃, it is clear that473

(37) 1 < ξ−1
max ≤ ξ̃ ≤ ξ−1

min474

Building from (37),475

ξ̃ ≤ ξ−1
min =

(
γ +

λmin

ξ̃

)−1

476

It follows that477

ξ̃γ + λmin = ξ̃

(
γ +

λmin

ξ̃

)
≤ 1478

which, in conjunction with (35), yields the bounds (37).479

Lemma 4.4. There is a constant ρ > 0 such that for all ξ480

(38) (K + 1)ξ̃ ≤
K∑

k=0

ξ−1
k ≤ ρξ̃K+1 ≤ ρ

(
1 +

√
2 ‖λ‖
γ

)K+1

481

Proof. The lower bound on
∑

ξ−1
k comes from the standard harmonic-geometric482

mean inequality. For the upper bound, note that483

f(ξ) =

(
K∑

k=0

1

ξk

)(
K∏

k=0

ξk

)
484

is a polynomial, so it has an absolute maximum ρ on the closure of SK .485

It is important to note that the power K + 1 of ‖λ‖ in the upper bound (38) is the486
best possible. Consider the case of ξ0 = δ, ξk = (1− δ)/K for k > 0 and small δ > 0.487
Then

∑
ξ−1
k ≈ δ−1+K, ξ̃ ≈ KKγδ−γ , and λk ≈ KKγ(ξk−γ)δ−γ . In this case,

∑
ξ−1
k488

is on the order of ‖λ‖1/γ . This power is why so much care must be taken to establish489
the well-posedness of (42).490

4.5. Itô’s formula. The following partial derivative formulas are needed in the491
application of Itô’s formula, and are written here assuming i ≥ 1, j ≥ 1, k ≥ 1. Recall492
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that ξ0 is not considered a separate independent variables because of (24).493

∂ξj ξ̃ = γξ̃
(
ξ−1
0 − ξ−1

j

)
(39)494

∂ξjλk = γξ̃
(
ξ−1
0 − ξ−1

j

)
(ξk − γ) + 1(j = k) ξ̃(40)495

= γλk

(
ξ−1
0 − ξ−1

j

)
+ 1(j = k) ξ̃496

∂ξiξjλk = γ2ξ̃
(
ξ−1
0 − ξ−1

i

) (
ξ−1
0 − ξ−1

j

)
(ξk − γ) + γξ̃ξ−2

0 (ξk − γ)(41)497

+ 1(i = j)
(
γξ̃ξ−2

j (ξk − γ)
)

498

+ 1(i = k)
(
γξ̃
(
ξ−1
0 − ξ−1

j

))
499

+ 1(j = k)
(
γξ̃
(
ξ−1
0 − ξ−1

i

))
500
501

Applying Itô’s formula to change variables to λ yields, for k ≥ 1,502

dλk =

(
Dξλk · b+ ε2

2
tr
(
σT
(
D2

ξλk

)
σ
))

dt+ (Dξλk)
T
σ dB(42)503

where Dξ is the gradient with respect to ξ and D2
ξ is the Hessian matrix with respect504

to ξ. No particular form of b is assumed.505
Since σY is symmetric and the trace has the general property that tr(PQR) =506

tr(QRP ), the trace term may be evaluated as follows despite the fact that no explicit507
form is possible for σ:508

tr
(
σT
(
D2

ξλk

)
σ
)
= tr

((
D2

ξλk

)
σ σT

)
= tr

((
D2

ξλk

)
A
)

509

After a laborious simplification,510

(43) tr
(
σT
(
D2

ξλk

)
σ
)
= γ(γ + 1)λk

K∑
j=0

ξ−1
j511

4.6. Well-posedness of the SDEs. The drift and volatility terms of (42) are512
continuously differentiable, so they automatically satisfy a local Lipschitz inequal-513
ity, as required by the general theorem concerning the existence and uniqueness of514
solutions in [10, §5.3].515

The theorem also requires a growth constraint formulated as follows. Let us adapt516
the usual big-O notation, using517

f
(
λY , λA

)
= g

(
λY , λA

)
+O2518

to mean that there exists a constant H > 0 such that for all λY and λY ,519

f
(
λY , λA

)
− g

(
λY , λA

)
< H

(
1 +

∥∥λY
∥∥2 + ∥∥λA

∥∥2)520

This manuscript is for review purposes only.



16 W. GARRETT MITCHENER

The growth constraint required in [10, §5.3] is βY + βA = O2 where521

βY =

K∑
k=1

λY
k

(
DξY λ

Y · bY +
ε2

2
tr
((

σY
)T (

D2
ξY λ

Y
k

)
σY
))

+ ε2 tr
((

σY
)T (

DξY λ
Y
)T (

DξY λ
Y
)
σY
)

βA =

K∑
k=1

λA
k

(
DξAλ

A · bA +
ε2

2
tr
((

σA
)T (

D2
ξAλ

A
k

)
σA
))

+ ε2 tr
((

σA
)T (

DξAλ
A
)T (

DξAλ
A
)
σA
)

(44)522

DξY λ
Y and DξAλ

A are Jacobian matrices, and D2
ξY λ

Y
k and D2

ξAλ
A
k are Hessian ma-523

trices. The difficulty here is that βY +βA turns out to contain terms of degree greater524
than 2, so we must confirm that these are negative for large λ. The following estimates525
are derived omitting the generation label where possible, as parallel logic applies to526
βY and βA.527

Incorporating (43), the generic β term is528

(45) β =

K∑
k=1

λk

Dξλ · b+ ε2

2
γ(γ + 1)λk

K∑
j=0

ξ−1
j

+ ε2 tr
(
σ (Dξλ) (Dξλ)

T
σ
)

529

The remaining trace term can be evaluated by cyclically reordering the matrices530

tr
(
σT (Dξλ)

T
(Dξλ)σ

)
= tr

(
(Dξλ)

T
(Dξλ)σσ

T
)
= tr

(
(Dξλ)

T
(Dξλ)A

)
531

After a massive amount of simplification,532

β = −γ ‖λ‖2
K∑
j=0

bjξ
−1
j + ε2

(
γ(γ + 1)

2
λ0 + γ2 ‖λ‖2

) K∑
j=0

ξ−1
j + ξ̃

(
λ · b+ 2ε2λ · ξ

)
+ ε2

(
−‖λ‖2 + ξ̃2

(
1− ξ0 − ‖ξ‖2

)
+ 2γξ̃λ0

)
(46)

533

The largest magnitude terms are those that include ξ−1
j , and those must be handled534

carefully. The others are O2 in light of inequalities proved in subsection 4.4, and the535
assumption that the bj ’s are bounded.536

β = −γ ‖λ‖2
K∑

k=0

bk
ξk

+ ε2γ ‖λ‖2
(

γ + 1

2 ‖λ‖2
+ γ

)
K∑

k=0

1

ξk
+O2(47)537

To express the constraints on bY and bA that are necessary to guarantee that the538
remaining large magnitude terms in βY and βA are negative overall, the following539
definitions are required. Given µ > 0, define the µ-border of SK to be540

(48) SK
µ =

{
x ∈ SK

∣∣ ∃k : xk < µ
}

541

The border class of x ∈ SK
µ is BC (x;µ) =

∑
k 1(xk < µ). The parameter µ will be542

omitted when it is clear from context.543
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Lemma 4.5. If ξ ∈ SK
µ then544

(49) ξ̃ ≥ µ−γ BC(ξ) ≥ µ−γ545

Proof. Let c = BC(ξ). Then there are c indices k for which 1/µ < ξ−1
k and K− c546

indices for which 1 < ξ−1
k . Taking the γ power of the product yields (49).547

Lemma 4.6. Suppose
(
bY , bA

)
is bounded. Suppose there exist numbers G > 0,548

F , and γ > µ > 0 such that549

if ξY ∈ SK
µ then

K∑
k=0

bYk
ξYk

≥ G

K∑
k=0

1

ξYk
+ F

and if ξA ∈ SK
µ then

K∑
k=0

bAk
ξAk

≥ G

K∑
k=0

1

ξAk
+ F

(50)550

Then there exists an ε0 > 0 such that for each ε0 > ε > 0, βY + βA = O2.551

Proof. If ξ ∈ SK \ SK
µ , then λ is bounded and each ξk satisfies 1/ξk < 1/µ. Since552

b is assumed to be bounded, it is straightforward to confirm that β = O2 in this case.553
Suppose ξ ∈ SK

µ . Then from from (49), ξ̃ ≥ µ−γ . Consequently, (36) implies554

‖λ‖ ≥ (γµ−γ − 1)/
√
2. Using the lower bound G to replace the bk terms and pushing555

degree 2 terms into O2,556

β = γ ‖λ‖2
(

K∑
k=0

1

ξk

)[
−G+ ε2

(
γ + 1

2 ‖λ‖
+ γ

)]
+O2557

If ε is small enough,558

ε ≤
√

G
γ+1√

2(γµ−γ−1)
+ γ

= ε0559

then the factor in square brackets is negative and β = O2.560
Since the above arguments apply to both βY and βA, the sum satisfies βY +βA =561

O2.562

Lemma 4.7. If the vector field has the form563

bY
(
ξY , ξA

)
= UY

(
ξY , ξA

)
− ξY

bA
(
ξY , ξA

)
= UA

(
ξY , ξA

)
− ξA

564

where UY and UA are probability vectors with uniform positive lower bounds565

∀ξY , ξA : UY
(
ξY , ξA

)
≥ UY

min > 0

∀ξY , ξA : UA
(
ξY , ξA

)
≥ UA

min > 0
566

then it satisfies (50).567

Proof. For either generation,568

K∑
k=0

Uk − ξk
ξk

≥ Umin

K∑
k=0

1

ξk
− (K + 1)569

This manuscript is for review purposes only.



18 W. GARRETT MITCHENER

The example vector field (21) satisfies (50). Since the example Q from (2) is the570
probability vector for a binomial distribution, its least element is either Q0 or QK .571
Therefore, each element of Q satisfies572

Qk ≥ Qmin = min
{
q(0)K , (1− q(0))K , q(1)K , (1− q(1))K

}
.573

Each element of the distribution vector V as in (7) satisfies Vk ≥ η. If we try to574
set V

(
ξY , ξA

)
= ξY , then there is no way to choose G, hence the need for η > 0.575

Proposition 4.8. If b satisfies the hypotheses of Lemma 4.6, then for each ε0 >576
ε > 0, the SDEs (42) and (26) have pathwise-unique strong solutions for all positive577
time starting from each suitable initial value.578

Proof. The theorem from [10, §5.3] in conjunction with Lemma 4.6 confirms the579
result for (λY , λA), and the change of variables from subsection 4.4 maps those solu-580
tions to solutions of (26).581

4.7. Generalizations. The results in this section generalize to many other sit-582
uations, since many of the proofs make no assumptions on the specific form of b,583
although they were developed to apply to (21). For example, if there are more than584
two grammars of interest, the indices 0 through K can be remapped to any mixtures585
of grammars and the learning function Q can be adjusted accordingly, resulting in a586
discrete time model that converges to continuous time process with the same form as587
(26). There’s also no need to restrict Q to be the mass function for any particular588
distribution.589

In formulating (26), it was assumed that both generations were subdivided into590
the same types, that is, everyone of type k uses G1 with probability k/K. The results591
in this section do not depend on requiring all sub-populations to have states with592
same interpretation, or even to lie in simplexes of the same dimension.593

These results also generalize immediately to a population divided into any number594
of sub-populations, such as multiple age groups, geographic regions, or social classes.595
The key theorem 7.1 from Chapter 8 of [10] requires that the time step size be 1

N .596
It would continue to apply if the sub-populations were of different sizes but all were597
proportional to N .598

5. Dynamics in a 2-dimensional case. We will continue by restricting our599
attention to the case of K = 1. That is, simulated individuals use G2 exclusively or600
not at all, and in discrete time, XY

0 is the fraction of the young generation that never601
uses G2 and XY

1 is the fraction that always uses G2. Since XY
0 +XY

1 = 1, it is only602
necessary to deal with XY

1 . Likewise we may focus on ξY1 , ξA1 , and Q1 = q(r(X,Y )).603
The covariance function (22) reduces to a 2-by-2 diagonal matrix so it has a very604

simple square-root:605

(51) σ

(
ξY

ξA

)
=

√ξY1 −
(
ξY1
)2

0

0

√
ξA1 −

(
ξA1
)2
606

As N → ∞, the discrete time process converges weakly to the solution (ξY , ξA) :607
[0,∞) → (0, 1)× (0, 1) of608

dξY1 =
(
q
(
r
(
ξY1 , ξA1

))
− ξY1

)
dt+ ε

√
ξY1
(
1− ξY1

)
dBY

dξA1 =
(
ξY1 (1− η/2) + η − ξA1

)
dt+ ε

√
ξA1 (1− ξA1 )dB

A

ξY (0) = ξYinit and ξA1 (0) = ξAinit

(52)609
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Fig. 3. Phase portrait for (52) with ε = 0. The crossed dot ⊕ is a saddle point, the two dots
• are sinks, and the dashed curve is the separatrix between their basins of attraction. The arrows
indicate the direction of the vector field. Inset boxes show magnified pictures of the areas around
the sinks.

where BY and BA are independent one-dimensional Brownian motions.610

5.1. Comparison to the deterministic limit. In the deterministic limit ε = 0611
and returning to the specific learning process described in section 2 and section 3, the612
dynamical system (52) has two stable equilibria representing populations where both613
generations are dominated by one grammar or the other. The separatrix forming614
the boundary between the two basins of attraction passes very close to the stable615
equilibria. See Figure 3. Under the stochastic dynamics, the population will hover616
near an equilibrium until random fluctuations cause it to stray across the separatrix,617
where it will be blown toward the other. It will continue to oscillate irregularly618
between the two equilibria for all time. These separatrix-crossing events generate619
spontaneous monotonic language changes separated by reasonably long intervals of620
temporary stability.621

5.2. Memory kernel form. Another way to understand this form of instability622
is to express ξA1 as an average of ξY1 over its past, with an exponential kernel giving623
greater weight to the recent past. This is accomplished by making two simplifications.624
First, the resampling step from the Markov chain will be applied only to the younger625
generation, which removes the random term from dξA1 in (52) but not from dξY1 .626
Second, η in the aging distribution V will be set to 0. This yields a linear ordinary627
differential equation for ξA1 with ξY1 acting as an inhomogeneity628

dξA1
dt

= ξY1 − ξA1 , with solution ξA1 (t) = e−tξAinit +

∫ t

0

e−(t−s)ξY1 (s)ds.629

With this simplification, the dynamics for ξY1 take the form of a stochastic functional-630
delay differential equation631

(53) dξY1 (t) =
(
q
(
r
(
ξY1 (t),Ktξ

Y
1

))
− ξY1 (t)

)
dt+ ε

√
ξY1 (t)(1− ξY1 (t))dB632
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where the delay appears through convolution with a memory kernel633

Ktf = e−tξAinit +

∫ t

0

e−(t−s)f(s)ds.634

The age structure serves to give the population a memory, so that the speech pattern635
ξY1 of the young generation changes depending on how the current young generation636
deviates from its recent past average. Chance deviations of sufficient size are am-637
plified when children detect them and predict that the trend will continue, yielding638
prediction-driven instability.639

6. Discussion.640

6.1. Comparison to other models. The discrete and continuous models as641
described in sections 2 and 3 are based on the Wright-Fisher model of population642
genetics as described in [10], which is formulated as a Markov chain and its limit as a643
stochastic differential equation for an infinite population. The original Wright-Fisher644
model takes values on an interval, which makes the theoretical analysis much simpler645
than for (26). A similar derivation to that of section 4 resulting in a Fokker-Planck646
equation is given in [3], without the theoretical treatment given here. The model in647
[58] derives a similar model, grounding the learning process in Bayesian inference.648
Neither these nor the Wright-Fisher model incorporate age structure or forces such649
as learning and prediction that are not present in biological birth-death processes.650

A related dynamical system is the FitzHugh-Nagumo model for a spiking neuron651
[30, 42], which is a general family of two-variable dynamical systems. Its structure652
is similar to Figure 3 except that it has only the lower left stable equilibrium, which653
represents a resting neuron. A disturbance causes the neuron’s state to stray away654
from that rest state and go on a long excursion known as an action potential or spike.655

The language change model examined here differs from the stochastic FitzHugh-656
Nagumo model in several ways. It is derived as a continuous limit of a Markov chain657
rather than from adding noise to an existing dynamical system. It has two stable658
equilibria rather than one as long as ε is sufficiently small (although it is conceivable659
that some linguistic phenomenon might exhibit the single stable equilibrium). It is660
naturally confined to SK × SK , where FitzHugh-Nagumo models occupy an entire661
plane. The random term added to a FitzHugh-Nagumo model is normally Brownian662
motion multiplied by a small constant. The change of variables θ = arcsin(2ξ − 1),663
φ = arcsin(2ζ − 1) transforms the low dimensional case (52) to that form but the664
system remains confined to a square, and the change of variables to (42) on the whole665
plane has a non-constant coefficient on the Brownian motion. Thus, the theory of666
FitzHugh-Nagumo models must be adapted before it can be applied to this language667
model.668

Population-level memory has been used to model other social trends that exhibit669
momentum. For example, the authors of [16] develop a model in which parents use670
a discrete-time memory kernel analogous to (53) to compute running averages of the671
popularity of given names, and use this information when naming babies. The case of672
language change is different because children seem to be capable of contributing with-673
out decades of accumulated experience. They must get historical information from674
some other source, and age-correlated differences in speech is a reasonable hypothesis.675

7. Conclusion. The main goal of this article is to begin with a discrete time, fi-676
nite population model that can represent spontaneous language change in a population677
between meta-stable states, each dominated by one idealized grammar, and connect678
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it via solid theory to a continuous time, infinite population model. Language is repre-679
sented as a mixture of the idealized grammars to reflect the variability of speech seen680
in manuscripts and social data. A Markov chain that includes age structure has all the681
desired properties for the first model. The population can switch spontaneously from682
one language to the other and the transition is monotonic. Intuitively, the mechanism683
of these spontaneous changes is that every so often, children pick up on an accidental684
correlation between age and speech, creating the beginning of a trend. The prediction685
step in the learning process amplifies the trend, and moves the population away from686
equilibrium, which suggests the term prediction-driven instability for this effect.687

Fundamental results were proved. Specifically, in the limit as the number of agents688
goes to infinity, sample paths of the Markov chain converge weakly to solutions to a689
system of well-posed SDEs, which have the form of drift terms plus a small stochastic690
perturbation. The derivation of the correct SDEs and the proof that the convergence691
happens as intended require a change of variables specifically tailored to the geometry692
of the simplex, together with theoretical tools more sophisticated than those typically693
needed for population dynamics models. The proof that the system of SDEs is well-694
posed relies only on general properties of the drift vector field and the specific form695
of the infinitesimal covariance matrix.696

Looking at a low dimensional case, in the limit of zero noise, the prediction-driven697
instability comes from the proximity of stable sinks to the separatrix of their basins698
of attraction. The instability comes from the general geometry of the phase space as699
in Figure 3. Alternatively, the prediction process may be understood as comparing700
the current state of the population to an average emphasizing its recent past, and701
chance deviations trigger the instability. Concrete formulas were given for q, r, and702
Q, but the interesting behavior is not limited to these examples.703

Future studies of this model could include adapting and applying techniques for704
studying noise-activated transitions among meta-stable states, including exit time705
problems [13, 31, 32]. For example, it is possible to numerically estimate the time706
between transitions using a partial differential equation or a variational technique.707
The change of variables and associated theory may be of use to other dynamical708
systems whose phase space is a simplex, such as replicator dynamics [18].709
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