A stochastic model of language change through prediction-driven instability

W. Garrett Mitchener

College of Charleston

July 2007
Table of Contents

Introduction
 Language variation & change

An unstructured population
 Deterministic ODE
 Markov chain

An age-structured population
 Markov chain
 Deterministic ODE

Two parameters
 Independent
 Dependent

Conclusion

X
Language variation

- Multiple ways to say the same thing
 Ex: Late Middle English
 (1) I know not the muffin man
 (2) I do not know the muffin man

- Can be correlated to...
 - Location
 - Context
 - Gender
 - Attitude
Language change

Goal: Model spontaneous internally-driven language change

- Grows from variation
- Each speaker uses a mixture of old & new
- One variant replaces the other, mostly monotonically
Ex: *do*-support

Verb raising

\[
\text{IP} \quad \text{IP} \quad \text{I'} \quad \text{I} \quad \text{I} \quad \text{VP} \\
\text{DP} \quad \text{I} \quad \text{I} \quad \text{t} \quad \text{t} \\
\text{[\/*V,pres\]-know} \\
\]
Affix hopping

Diagram:

- IP
- DP
- I
- [V,pres]
- VP
- t
- V
- know
Mean field differential equation

- One parameter \Rightarrow 2 grammars
 - G_1: param unset
 - G_2: param set

- $m =$ mean rate of G_2

- $g(m) =$ mean rate of children

Birth/death process

$$\frac{dm}{dt} = g(m) - m$$
Unstructured Markov chain

Time step t

Each agent lives w/ some prob

Time step $t+1$

Dies w/ some prob, & replace w/ child

Dist of children for time $t+1$

= fn of state at time t
Time trace of one trajectory

Mean usage rate of G_2 as a function of time
Age structured Markov chain: Incrementation

At time step t, individuals can age, die, or give birth. At time step $t+1$, the population size is incremented by the number of births. The distribution of children for time $t+1$ is a function of the state at time t.

mean

NEW (prediction)

Dist of children for time $t+1$

= fn of state at time t
Time trace of one trajectory

Mean usage rate of G_2 among young group as a function of time
Time trace of one trajectory: One transition

Mean usage rate of G_2 among young group as a function of time
Young distribution and old distribution

Number of people with usage rate z (vertical axes). Time increases left to right. Top: Old. Bottom: Young. Darker \Rightarrow more.
Old mean rate vs. young mean rate
Mean field differential equation w/ age structure

- $v = \text{mean usage rate of } G_2 \text{ in the young group}$
- $w = \text{mean usage rate of } G_2 \text{ in the old group}$
- Birth, learning, aging, death

$$\frac{dw}{dt} = v - w$$
$$\frac{dv}{dt} = g(r(v, w)) - v$$

- $r(v, w) = \text{prediction}$
Mean field differential equation w/ age structure

- \(v = \text{mean usage rate of } G_2 \) in the young group
- \(w = \text{mean usage rate of } G_2 \) in the old group
- Birth, learning, aging, death:
 - \(\frac{dw}{dt} = v - w \)
 - \(\frac{dv}{dt} = g(r(v, w)) - v \)
- \(r(v, w) = \text{prediction} \)
Learning two independent parameters

\[m_2 = \frac{31}{32} \]

\[m_2 = \frac{1}{32} \]

- Parameters 1 & 2
- Means \(m_1 \) & \(m_2 \)
- Distribution of child speech = function of \(m_1 \) and \(m_2 \)
- Darker = more
Two independent parameters: Time trace

Mean usage rates among young group as a function of time
Learning two dependent parameters

\[m_2 = \frac{31}{32} \]

\[m_2 = \frac{1}{32} \]

- Parameters 1 & 2
- Can only set 2 if 1 is set
- Means \(m_1 \) & \(m_2 \)
- Distribution of child speech = function of \(m_1 \) and \(m_2 \)
- Darker = more

\[m_1 = \frac{1}{32} \]

\[m_1 = \frac{31}{32} \]
Two dependent parameters: Time trace

Mean usage rates among young group as a function of time
Conclusion

- Model of variable speech — usage rates
- In unstructured population
 language doesn’t change spontaneously
- In structured population
 language can change spontaneously
- Prediction-driven instability
Bibliography

Prediction function

\[y = \frac{1}{1 + \exp(k \, t)} \]
More *do*-support data

Do Support Frequencies

- Frequency of *Do*
- Date

Legend:
- Trans Affirm Q
- Intrans Affirm Q
- Neg Decl
- Affirm Obj Q
- Neg Q