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Abstract.

Although discrete formalisms have been successful at descr ibing the sets of grammatical sentences
in human languages, new tools are needed to model language variation. An individual's speech
pattern can be modeled more realistically by a stochastic gr ammar consisting of a set of idealized
grammars together with a set of usage rates. A population can then be represented as a probability
measure over a space of usage rates and physical or social loations. In this article, | investigate a
measure-valued di®erential equation for a spatially distri buted population in which individuals use
stochastic grammars. Under appropriate hypotheses, and as suming that children learn based on an
average feature of the nearby population's speech, the asym ptotic behavior of the measure dynamics
are controlled by the feature's dynamics, which can signi ca ntly reduce the dimension of the model.
| discuss the example of a single usage rate for choosing one of two grammatical options. If space is
unstructured, then all populations tend to a stable equilib  rium dominated by one option or the other.
If space consists of two well-mixed compartments, then each compartment may choose a di®erent
dominant idealized grammar, but increased migration cause s a bifurcation in which one idealized
grammar goes extinct. If space is continuous, numerical exp eriments show that the measure and
feature dynamics can exhibit traveling waves.
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1. Introduction.  Human language is a hybrid system. On one hand, the set
of grammatical sentences in a language can in general be described by discrete for-
malisms, such as context sensitive grammars, minimalism [1, 42],na optimality the-
ory [44]. Due in part to the in°uence of Chomsky [7, 8, 9], much of the researchni
linguistics has been focused on developing discrete formal descriptions of sentences as
produced and understood by idealized speakers. Idealized grammatical descriptions
can be formulated for phonology (the sound system), morphology (word struatre),
syntax (sentence structure), and semantics (meaning structure).

There are several shortcomings to this approach. First, many languages include
multiple grammatical constructions for expressing certain meanings, and discretéor-
malisms typically include no indication of why speakers should use one or the other
[26]. To give an example from [26], most English sentences can be expresseckither
active or passive voice with very little di®erence in meaning, and there are tenden-
cies but no hard rules for which voice to use in any given situation. Corpus studies
indicate that each individual writer varies the rates at which he or she uses varias
constructions across manuscripts [46], and grammatical change seems to consié a
more or less steady rise in preference for one alternative at the expense of anothmer
decades and across the population. Second, social context has signi cant in°uence on
the choices made during speech [22]. An idealized grammar states that both fatiar
and polite forms of address are grammatical, for example, but it is ditcult to state
precisely when to prefer one over the other. Third, speech production is imperfect.
Children in particular make a variety of interesting mistakes that mostly disappear
from their speech, but not entirely [2, 48]. Second language speakers almost alygm
maintain a noticeable level of variation from the language as spoken byypical native

?Mathematics Department, College of Charleston, Charlesto n SC. MitchenerG@cofc.edu. This
work was supported in part by grant #0734783 from the Nationa | Science Foundation.

1



speakers [47]. Fourth, native speakers sometimes disagree on whether particuken-
tences are grammatical, and grammaticality judgments are often graded rater than
binary [3]. Fifth, it is very dixcult to model language acquisition and change using
discrete formalisms. Such models can be made [12, 35, 5, 13, 44] but they genbralo
not take into account statistical properties of speech and do not describe how sakers
arrive at their usage rate for grammatical variants. They can also beoverly sensitive
to noise in the input.

Thus, there is a growing need for more tools that address the fuzzier aspects
of speech. Some mathematical tools have been developed for addressing the lexi-
con [39, 19, 38, 41] and syntax [3], but there is a need for tools for modelinthe
dynamics of grammatical change within a population of non-idealized speakers.nl
this article, we formulate a general class of linguistic population dynamicsthat re-
laxes frequently-used simplifying assumptions. Speci cally, speakers are alled to
use arbitrary mixtures of idealized grammars. The learning process takes the eine
population state as input. Spatial and social structure are included in a speakes
state, and the dynamics include the °ow of individuals from one state to another.

Since the resulting class of models involves in nite-dimensional dynamical sys-
tems, we prove a series of dimension-reduction propositions: Under certain assump-
tions, particularly that learning takes as input only macroscopic properties of the
population's speech patterns, the in nite-dimensional dynamics are asymptotically
controlled by a closed system of di®erential equations for those macroscopicqper-
ties. These results are then applied to example models of language change, one in
which space is divided into two compartments, and one in which space is modeled
continuously and the change takes the form of a traveling wave.

1.1. The modeling process. Di®erent mathematical models for a single phe-
nomenon can cover a huge range of detail, and each level has its advantages and
disadvantages. For example, if one needs to model a chemical dissolved in water,
the most detailed framework might be quantum mechanics, representing each sub-
atomic particle in each molecule of solvent and solute. On a coarser scale, ais and
bonds can be represented by rods and springs. One can dispense with the individual
molecules altogether and use continuum mechanics. At the coarsest scale, the solution
can be represented as a homogeneous volume of liquid with a particular concentratio
of solute.

Within linguistics, the same range of mathematical models can formulated. On
one extreme, each speaker, utterance, and meaning can be represented in full detail.
Coarser models might keep track of each individual's state, but abstract awayhe de-
tails so that speaker states are representable as a few binary bits. Even coars one
might keep track of the number of speakers in each of a very few states, so inddual
agents and sentences are not represented directly. At the coarsest level, a popula-
tion may be boiled down to compartments, each of which has a single bulk spelec
pattern. The advantage of the detailed simulations is realism, but their disadvantage
is tractability: The experimenter can run computer simulations up to a certain size
and collect statistics, but proving meaningful theorems about their behavior or “tti ng
the huge number of parameters to data is not generally possible. The advantagef o
the coarser models is tractability, but their disadvantage is realism: One can clgu-
late "xed points and prove stability results for a dynamical system represening an
in nite population, but its representation of language may be so simpli'ed that its
applicability is in doubt. In-between models are compromises between realism and
tractability.



Currently, the linguistics modeling community favors the extremes. For example,
there are detailed simulations of individuals learning a language [17, 5, 29hnd con-
tinuous population dynamics [28, 33, 34, 30, 31, 20, 37, 36], but the middlground
is somewhat sparse. One purpose of this project is to build models in that middle
ground, analogous to the mesoscale continuum mechanics that lie between microscale
guantum physics and macroscale bulk dynamics.

1.2. Population dynamics with probability measures. For linguistic pop-
ulation dynamics in the presence of non-idealized speech, a natural mathematical tool
is the probability measure, which can °exibly represent the distribution of speakers
as a function of possible states. Signed measures form a Banach space, of which
the probability measures are a closed subset. Much of the theory of ordinary dif-
ferential equations applies directly to dynamics in Banach spaces and therefore to
measure-valued di®erential equations. However, in nite dimensional geometry can be
counter-intuitive and requires careful treatment.

The use of probability measures rather than some simpler mathematical object
deserves some explanation. Let us consider a simple scenario where speakers use a
mixture of two idealized grammars G; and G, that are identical except for one syn-
tactic construction. Each individual's speech pattern is represented by a real nhumbr
z 2 [0;1] indicating the frequency with which he or she usesG;. In the limit of a
large, well mixed population, the populatign state at time t might be represented by a
probability density function u(t; § where , u(t;z) dz is the fraction of the population
whose usage rate is inA. It is possible to formulate a sensible di®erential equation
for which u(t; ¢ takes values in the space.? in which all continuous density functions
reside. However, there is a disadvantage to using this space: If the dynamics can deiv
a language variant to extinction, it might be necessary to include a discrete featre
in the dynamics, such as a population state in which all people use the old vént at
rate 0. Representing distributions with mass concentrated at a point in a contnuum
requires an atomic probability measure, often represented by a delta function, and
L! does not include such generalized functions. Since both continuous and discrete
distributions are potentially necessary, it makes sense to work in the spacef®igned
measures rather thanL'. Additionally, measures can represent sets of individual
agents as a sum of atomic measures, as well as in nite populations using contiaus
densities, potentially providing a tool that can unify in"nite population models as
limits of "nite population models.

Therefore, consider a time-dependent probability measurei(t; dz), whereu(t; A) = |}

,2 a U(t; dz) is the fraction of the population whose usage rate is iPA. The population
dynamics are then given by

@(t; dz)
@t

where Q(%; A ) is the distribution for the number of children with usage rate in A
given that they are learning from a population with usage frequencies distributed
according to the distribution 1. The Q term represents the distribution of births
contributing to usage frequencyz, and the j u term represents deaths. In formulating
this equation, it is assumed that births and deaths occur at the same rate, that this
rate is independent of language, and that time has been rescaled so that this rate has
unit magnitude. This model is a step upward in complexity from [28, 33, 34, 31,18]
in which it is assumed that each child learns primarily from his or her parents
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Since (1.1) contains no partial derivative in z, we may interpret it as an au-
tonomous, in nite dimensional, ordinary di®erential equation rather than a functional
partial di®erential equation:

udt) = dz 7! Q(u(t);dz) i u(t;dz)
or, leaving z and t implicit,
u’= Qu)i u: (1.2)

With that basic model in place, we introduce a spatial variable x and allow for
the population to be distributed continuously or discretely in space:

u%t) = (dx;dz) 7! Q(u(t);dx;dz) i u(t;dx;dz)
or with t, x and z all implicit:

W= Q)i u: (L3)

What remains is to add a linear term representing spatial and linguistic °ow. That
is, adults are allowed to move from place to place, but with the restriction that the
°ow rates are expressible as a linear operato6G:

u’= Q(u)i u+ Gu: (1.4)

The dynamics so formulated are deterministic, but represent random variation in
language as distributions over usage rates. The development of mesoscale models
with stochastic components is beyond the scope of this article, but is addresseith
other projects by the author [32].

1.3. Dimension reduction. We would like to determine if the dynamics for
u might be understood in terms of some mean eld simpli cation. For example,
under the simplifying assumption of an unstructured population, speakers are indis-
tinguishable and sentences are selected uniformly at random from all speakers. Hac
child e®ectively hears and learns from the population's mean usage rates of pdssi
variants. This suggests that we investigate the circumstances under which a clesl
dynamical system can be formulated for the mean ofi, and determine the extent to
which information about the mean determines the dynamics ofu. Such circumstances
would justify replacing the in nite dimensional dynamics of u with “nite dimensional
dynamics representing the mean speech pattern of the population. Furthermore, if
the population is divided into physical patches or social classes, then the samsort
of "nite dimensional approximation ought to be possible within each compariment,
with some additional terms indicating the migration rates among compartmerts.

The “rst step is to formalize (1.4) in Section 2, and prove that under appropriate
assumptions, it has unique probability-measure-valued solutions for all forwad time.
We then focus on the case where learning depends only on aggregate features of the
population state. Rather than limit ourselves to mean dynamics, we suppose nre
generally that features lie in some linear space, and that there is a linear operato
that extracts the aggregate features from probability measures. A crucial assuition
is that migration causes features to °ow: The feature extraction operator needsa be
interchangeable with the migration rate operator using a feature °ow rate operator.

The next step is to prove that the existence of certain stable structures within
the feature dynamics implies the existence of parallel stable structures within the
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the full measure dynamics. If the entire feature phase space is lled by the basins of
attraction of these stable structures, which is true for generic one- and two-dinensional
dynamical systems, then the asymptotic behavior of the full measure dynamics is
completely accounted for by the parallel structures.

With the general mathematical machinery developed, we will turn in Section 3
to the speci ¢ example of the dynamics of the usage rate oG, as opposed toG,,
under the assumption that children learn from the mean usage rate. If the populatio
is unstructured, the dynamics are simple: Generically, the population converges to a
stable equilibrium dominated by G; or G,. However, if the population is split into
compartments, then each compartment may choose a di®erent dominant grammar,
and an increase in the migration between the compartments can lead to a bifurcatin
that eliminates one of the grammars. If the population is distributed on a cortinuous
space, then (1.4) may be related to a reaction-di®usion equation, and numerical exper-
iments show that it can exhibit the traveling waves characteristic of such equatons.
Each of these examples is connected to instances of language variation and change in
the linguistics literature.

Although the model is described as if the spatial variable represents physical sge,
it could just as well be interpreted as social space, representing ethnicity, economic
class, or any combination. The migration process is then interpreted as including
social mobility.

2. Mathematical machinery.

2.1. Notation, assumptions, and fundamental results. To begin, here are
some assumptions and notation that will be used throughout.
Definition 2.1. - is a locally compact Hausdor® space of states that individiga

may be in. Associated with- is the Borel ¥:algebraB- of measurable subsets of .
All measures considered in this paper will be "nite regular Boel measures.

For example, if the population is unstructured and there are two alternative speeh
patterns whose usage frequency may vary, then - = [Q1]. If the population has k
patches and two alternative speech patterns, then - = f1;2;:::;kg£ [0; 1] to indicate
an individual's location and speech pattern.

Definition 2.2. M is the Banach space of bounded measures @n ;B-) with
the total variation norm,

X
ktkry = sup IFi:

partitions  fFj g of - i

The measure of a setA 2 B- under * 2 M will be denoted A , and the integral
of a function f over a setA with respect to * will be denoted
z

f(x)* (dx):
X2A
Equations satis ed by measures will sometimes be expressed in di®erential notan,

as in
Z

°(dx) = f(s)t(ds;dx)j - (dx):

s2A
Delta measures, also called point measures or delta functions, will be denoted

X = 1 ifs2X

0 ifs62X
5



and
Z

f(X) &(dx) = f (s):

X2A
Measures are partially ordered; in this paper, the primary use of that order is the
notion of a positive measure: * , 0 means that for eachA 2 B-, A 2 R and
1A , 0. Additionally, a measure can bestrictly positive: 1 > 0 means that® , 0
and! 6 0.

The mass of a measure! is given by the measure of the whole space under,
! -. Note that for positive measures, *-= k'K, .

Definition 2.3. M £ is the subset ofM of strictly positive measures,

ME=fL2Mj 1> Og: (2.1)

Definition 2.4. P is the set of probability measures on .
P=ft2M£fji-=1g¢g (2.2)

and for each® 2P, kt*ky, =1-=1.
Assumption 2.5. Q: P ! P is the learning function. It must satisfy a Lipschitz
condition on P: There is a constantL > 0 such that

811;122P kQ(t1)i Q(2)kry <L Kt1j okgy: (2.3)

The Q function takes as input a probability measure that represents how indi-
viduals in the population are distributed over their possible states. Its output is a
probability measure that represents the distribution of the state of a random peison
born into that environment. The Lipschitz condition guarantees that it is con tinuous,
plus a bit smoother.

Definition 2.6. A function f :M!'M is said to respect positivity if 1 2 M £
impliesf(*)2M £.

Assumption 2.7. G:MIM is a bounded linear operator such that for all
12M,

(G*)-=0 ; (2.4)

and M (t) = €€ is a time-dependent bounded linear operator that respects pitivity
forall t, O.

The M process represents part of the population °ow, speci cally,M (t)! gives
the state of a population initially in state * after experiencing migration (but not
birth and death) for a time t. The migration rate operator G represents instanta-
neous °ow due to migration and will be used to incorporate these e®ects into the
population dynamics. The constraint (G!)- = 0 means that the net °ow over the
entire population is zero, even for an un-normalized measurg, so that the population
is self-contained and should not grow due to migration. More formally, an mmediate
consequence of this constraint is thatM (t) preserves the mass of measures, as is seen
from the power series

H 2 1
(M(t)1)-= 1 +1tG + EG21 +1 -

=1._



because in each term past the rst, G"!)-=( G(G"i 11))- = 0. From this and the
assumption that M (t) respects positivity, it follows that forall t, O,M(t): P!P

For a single-compartment population with no migration, G = 0 and M (t) = |I.
It is possible to generalizeM to a semigroup and letG be its generator, but there is
no need for such generality in the examples in this paper. Instead, we will eventually
assume a somewhat more speci ¢ form foM and G.

Assumption 2.8. u:[0;1)!P is the time-dependent population state. Sam-
pling the population at time t produces random a element of distributed according
to u(t). The dynamics ofu are

u®= Q(u) i u+ Gu; u(te) = Uo: (2.5)

As a technicality, there is no theoretical dixculty dealing with derivatives or integ rals
of a Banach-space valued function of a real variable. See for example, chapter Il of
[10]. Furthermore, bounded linear operators may be exchanged with derivativesral
integrals in t, which justi es operations such as
nz 1 z
gtydt S=  (g(t)S) dt

whereS2B-and g:R!'M
The various assumptions onQ and G are required to prove that solutions to (2.5)
are well de ned. A general result, Theorem 5.1 from section VI.5 of [27], will be
applied. The assumptions so far immediately satisfy the following hypothesesf this
theorem:
2 P is closed.
2 A(u)= Q(u)j u+ Guis continuous,A:P!'M
2 For eachu 2 P, kA(u)k;,, - 2+ kGk, so A maps bounded sets to bounded
sets.
The theorem requires con rmation of two other hypotheses. First is a condition tha
saysA does not drive the dynamics o@P.
Proposition 2.9. Forallu2pP,

1
liminf =d(u+ hA(u);P)=0
A
where d(x; D) is the distance from the pointx to the setD, as in

dix;D)=inf tkx i yk;y, jy2 Dag:

Proof. We will need the expansions

il =1+ hGj 1)+ %hz(Gi )2+ 12

h

) 1
gl 1 h+§h2+:::

transformed into
i ¢
|+h(G| |): h(GiI)+O|h2

. i ¢
h=1; e "+ 0'h?
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The expression of interest is
u+ hA(u)

(I+h(Gi I)u+ hQ(u) _
G+ (1 e MQu)+ O'h?

, ¥ |

e NECu+(1; e h)Q(u)+o'h2¢

SinceQ(u) 2 P and €Cu = M (h)u 2 P, the dominant term yo is a convex com-
bination of probability measures, so it is ?|Sqta probability measure. Therefoe,
d(u+ hA(u);P) -k u+ hA(u) i yok;y, = O h? .0

Second is a bound on a sort of one-sided Géateau di®erential.

Proposition 2.10. For eachu andv 2P,

.1
h|1|n8+ H(kui VKry ik uj vi h(A(u)i A(V)k:y)
- (L+1+ KkGK)kuj vk,

Proof. The limit exists thanks to the convexity of k¢k.,, and a monotonicity
argument, as inx 1.5 of [27]. Thus we only need to show a bound.
Letr = kuj vkyy ik ui vi h(A(u)i A(v))ksy . Using the triangle inequality,
jri-k h(A(u) i A(V)ksy
h(kQ(u) i Q(V)kyy, + kuij vkyy, + kGuj Gvkq,, )
h(L +1+ KGK)kuj vk
0

Proposition 2.11. Every initial value problem (2.5) has a unique solutionu :
[0;1)!P . If uy and u, satisfy the di®erential equation, then for allt ;, 0

kug(t) i uz(t)kry - el KGOy, (0) uz2(0)kyy

Proof. This follows from Theorem 5.1 fromx VI.5 of [27]. O

2.2. Feature dynamics and dimension reduction. Under the simplifying
assumption the population is unstructured and well mixed, we consider learning func-
tions Q that depend onu only through its mean. More generally, consider a bounded
linear operator T taking a population state u to those features that are relevant to
learning, and suppose thatQ(u) = g(Tu). This yields the di®erential equation

u’= g(Tu)j u+ Gu (2.6)

where as in Proposition 2.11, there is a unique solutiom : [0;1 ) ! P for each initial
condition u(0) = ug 2 P. The featuresm = Tu also satisfy a di®erential equation,
derived by applying T to both sides of (2.6):

Tuw=q(Tu)j Tu+ TGu

By making appropriate assumptions about howT interacts with G and introducing a
related feature °ow rate operator H, the u dynamical system yields a closed dynamical
system for featuresm = Tu,

m®= g(m)j m+ Hm
8



Thus, with appropriate assumptions, the in nite dimensional u dynamics can be re-
duced to much lower dimensionalm dynamics, and many features of theu dynamics
are controlled by the underlying m dynamics. This section proves several results
about the extent to which the asymptotic dynamics of m determine the asymptotic
dynamics of u.

We need the following additional de nitions and assumptions.

Assumption 2.12. Y is a Banach space representing interesting features of ele-
ments of M . Its norm will be denoted k¢k,

Assumption 2.13. T :M!Y s a bounded linear operator that extracts aggre-
gate features from a probability density.

For example, T could be the mean usage rate, any moment of the usage rate, or
any tuple of moments, in which caseY = R". The assumption that T is linear allows
us to swap it with d=dt, which is important in connecting the full measure-valued
population dynamics with the feature-valued population dynamics. Typically, T will
be many-to-one and speci ed onP, but it generalizes to all of M by linearity.

Assumption 2.14. In this section, we consider the case where the learning func
tion has the form Q(u) = g(Tu). Formally, q: Q! P is a Lipschitz-continuous
function de ned on some closed and bounded subs& %2 Y. We require for each
u2P that Tu2Q sothatq+T : P ! P is well de ned. We also require that for
eachm 2 Q there exists at least oneu 2 P such thatTu = m.

Assumption 2.15. H :Y !Y is a bounded linear operator representing feature
°ow rates. If m2 Q thenHm 2 Q. ltis related to T and G by the identity

TG= HT: 2.7)

We also assume thakGk < 1 and kHk < 1.
The norm constraints on G and H ensure thatGj | andH j | are non-singular,
and that

TG 1) t=(H )T (2.8)

Using these assumptions in conjunction with power series for functions of the opetars
G and H gives, for example,

TelCi Dt = gHi Dt (2.9)

The existence ofH allows the feature operatorT to be swapped with the migration
rate operator G. It represents the e®ects of migration on features rather than on the
population distribution.

Assumption 2.16. m : [0;1) ! Y s the time-dependent vector of features
representing the population state. The dynamics ofn are derived from the dynamics
of u by applyingT to both sides of (2.6):

TuY= TgTu)j Tu+ TGu
(Tu)’= Tg(Tu)j Tu+ HTu

Setting m = Tu yields the closed dynamical system

m°= Tgm)j m+ Hm: (2.10)



Proposition 2.17.  For every initial condition m(tg) = mg in Q there is a unique
solution to (2.10), de ned for all t , tg.

Proof. Since q is Lipschitz continuous, the standard Picard-LindelAf theorem
guarantees the existence of unique solutions to initial value problems on nite tine
intervals. (See for example Chapter VI of [27].)

Given mg, de ne ug = g(mg). From Proposition 2.11, there is a unique solution
u(t) for (2.6) dened for all t , to. This gives a solution m(t) = Tu(t) for (2.10)
dened for all t , tg. Since the solution form is unique on every nite time interval,
it follows that m(t) = Tu(t) is the unique solution for m de ned for all t. O

It turns out that the asymptotic dynamics of m determine much about the asymp-
totic dynamics of u. First, we show that xed points for one correspond exactly to
“xed points for the other.

Proposition 2.18. If 42 P is a xed point of (2.6), then m, de ned as

hm=Tu

is a xed point of (2.10).
Proof. Given that

qTe)+(Gi Hu=0;
apply T to both sides to derive
Tg@)+(H i )M =0:

O0
Proposition 2.19.  For each xed point t of (2.10) there is a unique "xed point
b of (2.6) such thatTé = m, and U is given by

u=i(Gi 1) ‘q(m):

Proof. The hypothesis that  is a "xed point gives
m=j(Hil) Tqm):
The de nition of W implies that
Ta= i T(Gi 1) fgf) =i (Hi 1) 'Tq(m)=m
and that
qim) =i (Gi It
With this information, the right hand side of (2.6) evaluated at u gives
qT)+(Gj NDu=qm)+(Gj I)b=0:
To prove uniqueness, letvt be another xed point with T¥ = m. Since 0 =
g(tn) + (G 1)V, the non-singularity of Gj | implies that ¥ =u. O

The basins of attraction of asymptotically stable features are also in paallel, as
the next two propositions prove.
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Proposition 2.20. Let m; and m;, be solutions to(2.10), and let u; and u, be
solutions to (2.6) with Tu;1(0) = my(0) and Tu,(0) = m,(0). Suppose

tIlilm kuy(t) i ua(t)ky, =0:
Then

tI‘ilm kmy(t) i ma(t)ky, =0:

Proof. Applying T to (2.6) and using (2.7) shows that
(Tup)®= To(Tug) i Tug+ HTuy

which means that Tu; solves (2.10). Since initial value problems under (2.10) have
unique solutions, it follows that for all t , 0, my(t) = Tug(t). Similarly, my(t) =
TUZ(t).

Therefore,

kmq(t) i ma(t)ky -k Tkkug(t) i uz(t)key

and since the right hand side converges to 0, so does the lefil
Proposition 2.21.  Let uj;u,:[0;1 )! P be solutions to(2.6). Let m; = Tu;
and m, = Tu,. Note that m; and m; satisfy (2.10). Suppose

tI‘ilm kmq(t) i my(t)k, =0:
Then
tIlilm kua(t) i ua(t)ke, =0:

Proof. If we regard m as known, we may think of the u dynamics as a linear
di®erential equation in u with a non-homogeneous term containingm, that is,

udt)i (Gi 1u(t) = g(m(t)):
We multiply by the integrating factor ei (i )t and rearrange the terms to 'nd
Z t
u(t) = eCiDtyy+  eCi D g(m(s)) ds: (2.11)
0

Applying this to u; and u, and taking the di®erence gives
kUz(t)i Ul(t)kTv . oglGiNte kUZ(O)i Ul(o)kTv

Zto o

+ ge(Gi F)(ti S)(q(mz(s)) i q(ml(s)))g ds
0 TV

The assumption that kGk < 1 is key here, since it guarantees that(®i ')t is shrinking
ast increases:

o o ° °
ge(ei Dte — ° i It (Gt°
o o
= g t°th°
X ej 1k Gk)t
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We need to split the integral. Given " > 0, and a Lipschitz constantL for q, let ¢ be
suzciently large that for each s, ¢,

kana(s) | ma(ehky < 1S, (2.12)
Introducing the positive constants
Ci= §U_z(oto) i Ur(to)kry .
Ca= “te (CIIA(ama(e) i amu(s)° | ds
C:3=Ci+ Gy
it follows that . .
kuz(D) i U(Dkpy - e '>t3ku§(0)i UL(O)kry
# 201 T (G (qma(e) | qma()° s
Z ¢ ) o

£ oelCi9 kgmy(s) | g(Ma(s)kry ds
é
i ei 1k Gk)t(Cl + CZ)

t
+ g kGRS kmy(s) i my(s)ky ds
é
" . k Gk) z t
. g @ik Ghtg, 4 | g (L] o (WK GKI(ti 8) gg
L o,
3 <
. ei (1ik Gk)tC3+ " 1i e‘ dik GK)(ti ¢)

Letting t!'1 ,

limsupkua(t) i ui(t)ky - limsupe Gk GRICy 4 (1 e ik Gt )y
ti1 til

Since the "nal inequality holds for arbitrary "> 0, it follows that kux(t) i ui(t)kqy !
Oast!1l .O0O

Corollary 2.22. Let u be a solution to(2.6), and let m = Tu. Supposet 2 Q
andm(t)! mast!1l . Thenu(t)!; (Gij I)ilq(m)ast!l

Proof. Observe that i must be a xed point of (2.10). Then &4 = j (G j
1)i 1g(fn) is a "xed point of (2.6) by Proposition 2.19. The conclusion follows from
Proposition 2.21.0

Another consequence of Propositions 2.20 and 2.21 is that if twa trajectories
are di®erent but initially map to the same feature mg, then the di®erence between
the two trajectories shrinks to zero. In other words, only information derived from
the features persists.

Corollary 2.23. Supposeup; and ug, are probability measures withT up; =
Tugz = mg. Let u; and u, be the solutions of (2.6) with initial conditions ug; and
Ug2 respectively. Then

tIlilm kui(t) i ua(t)kyy =0:
12



In addition to "xed points and their basins of attraction, limit cycles and their
basins of attraction exist in parallel.

Proposition 2.24. Let u be a solution to (2.6), and let m = Tu. Supposem
converges to a limit cycle ag ! 1 . Then u converges to a limit cycleag!'1  and
this limit cycle is unique.

Proof. The limit cycle o of (2.6) may be recovered from the limit cyclem-and its
period ¢. Convergence ofu with 4 then follows from Proposition 2.21.

To begin, if tg is any element of P that happens to satisfy Tag = m(0), then the
solution to (2.6) starting at o will satisfy Te(t) = m(t) and converge with u, but
there is no guarantee that a genericu~s actually a limit cycle. Only one such up will
work.

Using an integrating factor of el (Hi Dt with (2.10), it follows that

z t
m(t)= e DtmE)y+  eMi D ST (m(s)) ds:
0
Sincem{(¢) = m(0),
3 4

146
mO)= | eHine : i gHi Dei T g(m(s)) ds:

o o

Note that since “e(Hi )¢ = @i ¢ °gHe® . @i (Lik HK¢ gand kHk < 1, we know that
“eHiNe® < 1. Therefore, the operatorl j ef'i D¢ js non-singular, so its inverse is

well de'ned. Similarly, the operator | j e©i!)¢ js non-singular becausekGk < 1.
Using (2.9), we can swap theT all the way to the left to get
0 1

7 — il {
m(0) = T% I elGi e : elGi (e S)q(m(s)) dSE:

0

Using the up so de ned as the initial condition, the solution & to (2.6) satis es

Z
<
H(C) — e(Gi I)("U’O + e(Gi (éi S)q(Tu(S)) dS
ZO
é
30 g
= e(Gi I)Cu.0+ | | e(Gi I)(', U,O

:ﬂo

which veri es that 4 is a limit cycle.

Uniqueness follows from the observation that if there were twou-limit cycles for
m(0), they would have to converge with each other ast ! 1 , which is impossible
unless they coincide.O

These theorems mean that if them dynamics include a stable "xed point or stable
limit cycle, a parallel stable feature and its basin of attraction must exig in the u
dynamics. If the m dynamics lead all trajectories to converge to some xed point
or limit cycle, then the u dynamics lead all trajectories to converge to parallel "xed

13



points or limit cycles. If Y is one- or two-dimensional, then this argument will hold
for genericm dynamics [15,x1.9].

Intuitively, the formula (2.11) means that the initial condition is forgo tten expo-
nentially rapidly, and at any given t, the measureu(t) is dominated by a weighted
average of recent values of(m(t)). If at some tgy the value of m(tp) is known exactly
but the corresponding u(tp) is unknown, then the value of u(t) may be approximated
for t > t o by choosing any initial condition vo with Tvy = m(tg) and using the
approximation

z t
u(t) Yav(t) = eCi Dtitdytg)+  Ci Nt S g(m(s)) ds: (2.13)

to

The convergence ofv with u follows from Proposition 2.21 with m; = my = m.

However, if m(tp) can only be approximately estimated asm(tg) ¥amg, and if the
nearby trajectories of m are unstable, then the approximation (2.13) is potentially
doomed: Since there is nho way to guarante& vo = m(tg), we would have to chooserg
such that Tvp = mg, and consider a solutionm{t) with m(tg) = mg. There is no way
to guarantee that m(t) and m(t) converge, so Proposition 2.21 does not apply. Thus,
sensitive dependence on initial conditions fom can result in sensitive dependence on
initial conditions for u.

2.3. More speci ¢ migration rate operators. In preparation for some spe-
ci ¢ instances of this family of models, we now consider a more speci ¢ form for the
migration rate operator G.

Assumption 2.25. K : M ! M is a bounded linear operator that respects
positivity. We require kK k < 1=2.

Assumption 2.26. J:M!M is a bounded linear operator with the property
that for all t 2 R, the linear operator ¥ respects positivity. We requirekJk < 1=2.

The K operator represents immigration (arrival) and J represents emigration
(departure). The overall migration rate is G = K j J. The norm constraints on K
and J ensure that kGk < 1.

These operators must have several special properties that are automaticallirue
in the case ofG = 0. We need a conservation of population constraint so that everyone
who departs one location must arrive somewhere else:

Assumption 2.27. For each! 2 M £,

(Kt)-=( 3*)- (2.14)

This ensures that (2.4) is satis ed for G= K j J.

The di®erent positivity constraints for K and J re°ect the fact that departure
rates tend to be diagonal but arrival rates tend to be di®use. That is, some fragbn of
the people at each location leave in an in nitesimal time interval. Then the whole set
of moving people distributes itself over the whole space. In general, any realist K
will respect positivity. The J operator, however, requires more care, as it is important
that the mass of people leaving a location does not exceed the number present.

Proposition 2.28. M (t) = eKi It respects positivity, as required.

Proof. Letto2M £, andlet? (t) = eKi )1, Note that ! is the unique solution
to L9t) = j J* + K! with initial condition . This initial value problem may be
treated as semilinear, so that it falls under Theorem 5.1 in section VIIL.5 of 7] as
follows. The operator j J is the generator of the semigroupe 7' on the closed set
D = M£ [f Og. The function K takes the role of the potentially nonlinear term.

14



The technical assumptions of this theorem are satis ed by the fact thatk and J are
bounded linear operators. Its conclusion is that the solution! takes values inD.

From the discussion following (2.4), the mass ot is constant, so! is never the
zero measure. Thus, foreveryt 2 [0;1 ), 1 (1) 2M £. 00

2.4. Dynamics under a migration kernel and linear speech featur es.
To derive some more speci ¢ results, we suppose that the population inhabits soe
spacesS, which might be a set of compartments, a subset of Euclidean space, a circle,
a torus, or some combination of such spaces. We also assume that speech patteare
elements of a Banach spacek, which might represent usage rates for various idealized
grammars, for example. The individual state space for this problem is - = S£ L,
representing the fact that each individual has a spatial locationx 2 S and a language
or speech patternz 2 L. To simplify the notation, u(t; X;Z ) will be synonymous with
u(t; X £ Z) which is the probability that an individual is within X £ Z at time t.

We assume thatK and J are derived from a migration kernel - as follows.

Assumption 2.29. - :BSE£ S! R is a migration kernel such that the probability
that an individual at a location s moves to somewhere inX % S during the time
interval (t;t +¢ t) is - (X;s)¢t+ o(¢t) as¢t! 0. Given X £ S -(X;9 is a
positive real-valued, bounded, measurable function. Gives 2 S, - (¢s) is a nite,
positive, regular Borel measure. To simplify certain resuts, - does not incorporate
the probability that individuals do not move; that is, for exh x, - (fxg;x) = 0 and
(S99 - L

Note that - does not depend on the speech pattern: We make the simplifying
assumption that migration is independent of speech pattern.

Assumption 2.30. k:S! [0;1) is the net migration rate out of a point, given
by

Z
k(s) = - (S;s) = - (dx;s);
x2S

that is, the probability that an individual at s moves away in the time interval(t;t +¢ t)
isk(s)¢t+o(tt)asc¢t! 0. We assume that

supk(s) < 1 (2.15)
s25 2

to guarantee that the required bounds on the migration rate gerators K, J, and G
hold.

Consequently, the time until an individual leaves s is approximately exponentially
distributed with rate k(s) and mean 1=k(s). The probability measure for the condi-
tional distribution of the destination x of individuals leaving s given that they leave
during the time interval (t;t + ¢ t) is - (dx;s)=k(s) + o(1) as ¢t ! 0. The uncondi-
tional probability measure for the next location x of an individual currently at s after
the time interval (t;t +¢ t)is - (dx;s)¢ t+ (1 j k(s)¢ t)x(dx)+ o(¢ t)as ¢t! O.

The K and J operators applied to an arbitrary * 2 M are therefore de ned by

Z
(K* )(dx;dz) = - (dx; s)! (ds; d2);
ZSZS
(31)(dx;dz) = - (ds; x)* (dx; dz)
s2S
= k(x)* (dx;dz)
15



The total migration rate operator is
Mz 1
(Gt )(dx;dz) = -(dx;s)t (ds;dz) § Kk(x)?!(dx;dz):
s2S

Clearly, K respects positivity. To check that €Y respects positivity, observe that
J is essentially diagonal, so that

H 2 f
(@) dedz) = 1+ tk(x)+ O (z’f)) £ 1(dxd)
= k1 (dx; dz):
As required by the conservation constraint (2.14),
Z Z pz 1 1
(Kj J)}r-= - (dx;s)t (ds;dz) § Kk(x)* (dx;dz)
ZZZL U)is s2S 7 ﬂ
= k(s)! (ds;d2) j k(x)* (dx; dz)
z2L s2S x2S
=0:
The bound (2.15) onk ensures that the norm constraints onK and J are satis ed:
zZ Z
kJt kyy - k(x)jtj(dx; dz)
z2L x2S
1
5 K Kry
Z Z Z
KK® Kpy - - (dx;s)jtj(ds;d2)

ZZZL ZXZS s2S

k(s)j*|(ds;dz)
z2L s2S

1
5 KKy

With the assumptions so far, the requirements of Section 2.1 are satis ed, so
Proposition 2.11 applies and there is a unigue solution to initial value prdlems foru.

To reduce the measure-valued dynamics to feature dynamics as in Section 2.2,
we must verify more properties ofK and J and make several additional assumptions.
We assume that learning takes place from a local average of speech patterns. To
formulate the T operator, we need a representation of a physical neighborhood. This
is accomplished with a spatial in°uence kernel:

Assumption 2.31. A : SE£ S! [0;1) is an inuence kernel, where A(x;s)
represents the in°uence of speech patterns at locatios on a child learning at location
x. We assume thatA is integrable and bounded. Furthermore, for eaclx, the function
A(x; § should be strictly positive in some open neighborhood arodrx, indicating that
there is at least some local in°uence on children learning atx. For notational

convenience, de ne the operators
Z

(Mo*)(dx) = t (dx; dz)
722t (2.16)
(M) (dx) = z1 (dx; dz)
L

z2
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Note that Mo! is a probability measure onS if 1 is a probability measure on -,
and represents the marginal spatial distribution of the population ignoring speech
patterns. In general, kMot ky, = kk;, . Also, M is an L-valued measure on
S. (See Chapter 8 of [40] for an introduction to vector-valued measures and further
references.)

To combine the mean speech patterns from all speakers in an area, we will need to
weight Mot and M 1! against the in°uence kernelA, for which the following notation
will be useful,

z
(A~ o) (x) = A(x; s)° (ds): (2.17)
s2S

Thus, the mean speech pattern seen by a child as a function of locatiox and weighted
by Ais

(A~ My1)(x).
(A~ Mot )(x)’

With the goal of expressing learning as a function of this mean while maintainig the
form Q(u) = g(Tu), we de ne
_ gy ot f

1 = .
T Mo (2.18)

Thus, Q = T(P) is a set of pairs, the "rst component of which is anR-valued probabil-
ity measure mgq representing the spatial distribution of the population, and the second
component of which is anL-valued measurem; representing the average speech pat-
tern over a set of locations. We takeY % Q to be the Banach space of all such pairs
under the norm
oM TS
g Mo ¢

.y = max fk moky,, ; kmiks,, 9 (2.19)

Y

For an L-valued measure®, j°j is the R-valued measure
X
°JA = sup KeA Kk,
partitions fFjg of A i

andk®k;,, = j°j-. Therefore T:M!Y isabounded linear operator withkT*k,, -
k' kry . Given a local learning function goc(p; dz) that gives the probability measure
representing the speech patternz of a child who learns from hearing a local average
speech patternp, the overall learning function is
P 1 Hoc 1
Mo ..y = (A~ my)(x). .

o} My ;dx;dz = Qoc (A= mo)(x)’dz Mo(dx): (2.20)
As a technical point, we must be careful about the case A~ mg)(x) = 0, which
happens only when a region around is uninhabited and no births should take place
there. Since we assumed that#\(x; § is strictly positive in some open neighborhood
around x, the only way for (A~ mg)(x) to be zero is formg to be zero in an open
neighborhood aroundx, in which case mg(dx) = 0, and we adopt the convention
that g(m; dx; dz) should be zero for such values ok. Note that since q is de ned in
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(2.20) as a product of the spatial distribution and a speech pattern measure, the Ivth
process does not change the spatial distribution of the population.

It remains to verify (2.7) for the appropriate operator H. It will be useful to
overload the ~ notation so that

Z
(- ~°)(dx) = - (dx;s)°(ds)
s2S
which represents a °ow rate into dx given a spatial distribution ©. The composition
of the operators My and M with the migration operators K and J can be reversed
with Fubini's theorem, and expressed using-~,
A A

z - (dx; s)! (ds; dz)
ZZZL s2S Z

- (dx; s) 7 (ds; d2)

i ¢
M1 (K*) (dx)

s2S z2L
= (- ~ M11)(dx)
. ¢ z
'M1(31) (dx) = zk(x)! (dx; d2)

. z2L

i ¢
k()M 1t (dx)

and similarly for My.
Treating m as a two-component vector,

and interpreting integrals accordingly, the correct choice ofH is
Hm = ~mj km (2.21)

where - ~ m gives the °ow rate of features into a set of locations anckm gives the
°ow rate out of a set of locations.

A calculation veri es that kHk - 1. First, we nd a bound on the norm of the
operator - ~ ¢acting on a C- or L-valued measure® on S.

x % =
ke ~%kpy = sup = - (Fj;s)°(ds)—
partitions  fF; g of S j s2S

Z X
sup - (Fj;s)j°j(ds)

partitions fF;gof S s2S j
Z

-(S;s)j°j (ds)
ZsZS

k(s)j°j (ds)

s2S
K Kkgyp koKpy

Applying this result to the two components of m 2 Y givesk- ~ mk, -k kkSup kmk,,
sok- ~ ¢k -k kksup. Using the triangle inequality and the bound (2.15) onk, kHk =
k(- ~ @i kik- 2kkkg, < 1.
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Now the results of Section 2 apply, and the asymptotic dynamics ofi under (2.6)
are controlled by the asymptotic dynamics of m under (2.10), reproduced here with
K and J TTled in:

Eumo(dx)ﬂ _ ey UW@ZW Mo (dx)
dt ma(dx) o 2 0 (A= mo)(x)’ °
o 1
i mO(gX)
u?l( X) 0 (2.22)
+ -(dx;s)m(ds) i k(x)m(dx)
s2S
=Tgm)j m+ - ~mj km

Since goc(q; d2) is always a probability measure indz, the upper component of the
integral with respect to z will always give 1. Thus the equation formg can be simpli-
“ed:

q uz 1

—mo(dx) = - (dx;s)mo(ds) i K(x)mg(dx) (2.23)

dt s2s
Equation (2.23) is linear in mg with no dependence orm;. It may therefore be solved
using an operator exponential, somg can be taken as known when investigating the
dynamics of mj.

3. Dynamics for a single binary choice. We now apply the mathematical
machinery of Section 2: Assume there are two grammatical optionss; and G, for
expressing a particular meaning, and that each individual use<s; some fraction of
the time and G, the rest. Section 3.1 discusses a population with no spatial structure
or migration. In Section 3.2, the population is divided into two compartments. In
Section 3.3, the population is evenly distributed over a circle. For each of these
examples, the measure-valued di®erential equation has unique solutions for each iiti
condition, and the dimension reduction propositions apply. We can then examine the
asymptotically stable structures of the feature dynamics and conclude that the full
measure-valued dynamics have parallel structures.

3.1. A well-mixed population. If we imagine a child learning from a rea-
sonably large sample of the population and retaining no memory of who said wih
sentence, then the child will hear theG; option at approximately the average usage
rate. Space consists of a single point, for which there is only a single probdly
measure, so there is no need to represent it. The migration operators are veryrsple:
K=J=0.

The changing population is therefore represented by a time-dependent probability
measureu(t) on - = [0 ;1], and for a setA %2 - ;A 2 B-, the measure of A at time t,
denoted u(t)A, is the fraction of the population that uses the G; option at a rate in
A.

The most obvious choice of features is the mean, or in general some moment or
vector of moments of the distribution. We setY = R, Q =[0; 1], and

z

Tt = z1(d2): (3.1)
z2-
We assume that the learning functionq: Q! P is continuously di®erentiable, which
implies that g = T £q is also continuously di®erentiable. We will focus on the fea-
ture dynamics and leave q unspeci ed, because the dimension reduction theorems
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imply that given g, any admissible q yields measure-valued dynamics with the same
asymptotic behavior. The shape ofg is the driving force behind the dynamics.

The feature dynamicsm®= g(m)j m now take place in a one-dimensional interval.
Thus, the possible behaviors oim are sharply limited: m(t) must converge to a "xed
pointast!1 . Di®erent mean learning algorithmsg(m) yield di®erent xed point
con gurations.

3.1.1. The case of mean-perfect learning. If we suppose that learning is
mean-perfect, that is, children exactly reproduce the mean usage rate dB; in the
overall population, then g(m) = m, and the m dynamics are simplym®= 0. Thus,
the initial mean usage rate remains unchanged and the population converges to =

q(T uo).

This learning algorithm may be appropriate for cases in which a language staly
maintains multiple options for expressing a meaning. An example in English ighe
dative alternation [4]. Many verbs such asgive that take a subject and two objects
can be used with or without a preposition on the indirect object:

(3.2) John gives a book to Fred
(3.3) John gives Fred a book

This choice has been present in English for centuries, and there is no sign that either
of these options is in danger of disappearing.

Other persistent alternations include stranding vs. pied-piping of certain verbal
particles,

(3.4) | turned the light on | The particle on is stranded
(3.5) Iturned on the light | The particle on follows the verb turn via pied-piping

and the choice ofthat as a complementizer or a null complementizer, known ashat-
deletion

(3.6) | know that the light is on
(3.7) | know the light is on

See [21], for example.

3.1.2. The case of sigmoid learning. Frequently, languages prefer to use
one option almost exclusively. As an example from English, a few special verbs
occur before the negative wordnot or its contraction -n't and before the subject of a
guestion:

(3.8) | can see the other side.
(3.9) He can't see the other side.
(3.10) Can you see the other side?

However, most verbs are left in a lower position in the syntactic tree andcannot
appear beforenot or in inverted questions. A syntactic process calleddo-support
inserts the auxiliary verb do in negative statements and questions:

(3.11) I like mowing grass.
(3.12) *He likes not mowing grass.
(3.13) He doesn't like mowing grass.
20



(3.14) *Like you mowing grass?
(3.15) Do you like mowing grass?

(The * indicates an ungrammatical sentence.) Old English had a syntactic process
called verb raising that raised all verbs to a higher position. In a verb-raising grammar
main verbs appear before negation and in inverted gquestions and there is no need
for the auxiliary do. Old English used verb raising almost exclusively, but over the
centuries the grammar changed. Modern English usedo-support almost exclusively.

Despite this change, both grammars were more or less stable for centuries.oT
model this mutual exclusion, a one-dimensional phase portrait must contain two sthle
“xed points close to the extremes, separated by an unstable xed point. This impies
that g(m) is sigmoid shaped. That is,g is smooth, strictly monotone, and bounded,
with one in°ection point, but g is not necessarily an exponential sigmoid as ifi (x) =
1=(1+ € *). Furthermore, there must be three solutions tog(m) = m to generate the
correct number of "xed points. See Figure 3.1.

This one-dimensional model is not capable of representing language change. Ev-
ery population tends to one of the stable xed points and stays there. Even given
a fairly large perturbation, trajectories in this model tend to return to their original
equilibrium because the stable "xed points are well away from the boundary poih
separating their basins of attraction. Propositions 2.18, 2.19, 2.202.21 and their
corollaries apply. Therefore, the measure-valued dynamics are also constrained to
exhibit two stable xed points for any admissible learning function g. A more com-
plex, inherently higher-dimensional model is required to model transitions between
grammars.

3.2. A single binary choice with two regions. The mathematical machinery
developed so far also works if the population is divided into compartments.Consider
the simplest case, a linguistic population with two regions which will be cdled north
and south. As before, we assume that there are two idealized grammars, that ddiren
learn from a sample of sentences spoken by people in their native region, that they
e®ectively learn from the mean speech pattern of their native region, and that such
learning takes place under a sigmoid learning function as in Section 3.1.2. In addin,
people move from one region to another. This model of was analyzed heuristically
in [30] assuming idealized speech, but it lies within the current rigorous framewd
and there is no longer any need to assume that each individual's speech pattern is
limited to strictly Gj or G,. Instead, the dimension reduction results from Section 2.2
allow us to formulate the same two-dimensional dynamical system on the foundabn
of measure dynamics. We will relate the behavior of this reduced system to a change
in English syntax.

Each individual is in either the north (N) or the south (S), and may be charac-
terized by a usage rate forG; between 0 and 1. Thus,S= fNSgandL =[0;1]. A
measure® on Sis a linear combination of delta measures on the two points of5, or
essentially a pair of numbers €y ;°s):

°(dx) = °n in(dX) + °s(dx)

Integration against such a measure is just a sum.
z
f(x)°(dx) = £ (N°N + f(9°s:
s
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Fig. 3.1 . If the mean learning function g(m) is a sigmoid as shown in the graph, the phase
portrait for the m dynamics includes two stable “xed points separated by one uns table xed point.
Generically, the population will tend toward one of the stabl e "xed points thereby settling into a
state where one of the two grammars is used almost exclusivel y. The speci ¢ function given here is
used as an example throughout.

A measurel on - is essentially pairs of measures { y;1s) on L:
(dx;dz) = *y (dz)tn(dx) + * s(dZ)£s(dX):

This suggests that measures should be written as row vectors and elements of - shitd
be written as column vectors with indicesNand Sinstead of 1 and 2, as in

i ¢
L(X £2Z)= 1 (INGE Zy) [ (FSUE Zs)
. W
— |1 1 ¢ ZN
InZn +1sZs
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Thus, the migration kernel may be represented as a matrix that acts on the rignt

The migration operators are
J= N (3.16)

with the understanding that the action of a matrix A on a measuret is multiplication
on the right
[ ¢u311 ar

i ¢
In s = ap'n tants apln t axp's (3.17)

dy1  ax

With the migration operators handled, we turn our attention to the feature o p-

erator T: B
MR R
Ti= Rp N Ro S (3.18)
0Z'n(dz) ;5 zts(d2)
That is, T! is the mass and mean of the north and south submeasures &f The
correspondingH operator is the matrix K j J with its normal right action on RZ?.
The feature-based learning functionq is de ned by applying a local learning function
Ooc - [0;1] ! P to the mean usage rate in each region. Because the individual
submeasures do not in general have unit mass, we must divide by their masses when
applying goc-
1 s 3 . 3 .
MNno Mso

- m m
q Mn1 Mg = Mo Yoc rx; Mso Goc ng (3-19)

It should be understood that if my o = 0, then the left entry should be 0, and similarly
for the right entry. These conditions cover the cases when one of the regions is empty
and no births should take place there. To unify (3.19) with (2.20), note that since
S = fN Sg and children learn only from others in their native region, the in°uence
kernel A may be represented as the identity matrix.

The results of Section 2 apply, so we may focus our attention on the feature maix

m!
q ARll 4 Rll 4 !
m = Mno Mso — RP N( Z) Rlo S( Z) (320)
MNn1 Msy 0Z'n(dz) [ z's(dz)

The dynamics of m in this case simplify to

0o _ - R
MyNo= sMsoi NMNo
0o _ - -
Mgo= NMNoi sMso

HZ u bl
0o _ N1, , . )
mgi1 = Mno Z Qoc m ;dz + sMs1i NMn1i Mn1 (3.21)
0 N O
HZ Um51 1
0 _ . . .. .
Mg, = Mso Z Qoc mi’dz + 'NMn1i “sMs1i Msp
0 )
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The equations for the masses are uncoupled from the others, as in (2.23). Since the
feature matrix also satis’es myg + msg = 1, we may eliminate one of those two
variables entirely, as knowing one determines the other. We eliminatensy, thus,

Mio="s(i MNo)i NMno="si (n+ s)Myo: (3.22)

This equation implies that myo and mgg converge exponentially fast to equilibrium
values, representing the long-term behavior of the migration process alone:

Mno ! Mno = - _'_S

N s (3.23)
Mgo! Mgg = - T ast!l

N s

It is advantageous at this point to introduce new variables representing the mean
usage rates of the two regions

my 1

MN o
Ms1
Mso

XN

(3.24)
Xs =

and derive the following dynamics for them from (3.21).

m

0 , Mso . .

XN = OXn)+ Ts——Xsi NXN i XN
Mno

0 My o

Xs

g(xs) + 'NZ o N "sXsi Xs (3.25)
1

where g(p) = Z Goc (p; d2)
0

Sincemy ¢ and msg each °ow toward a unique xed value, the variablesxy and xs
are ultimately controlled by simple two dimensional dynamics,

XA = g(Xn)i Xn + N(Xs i Xn)

3.26
X$ = 0(Xs)i Xs+ s(Xn i Xs) (320

For the rest of this section, we will assume thatg is a sigmoid, as in Figure 3.1.

If no mixing at all occurs, thatis "y = s = 0, then xy and xs uncouple
completely. Intuitively, each region picks a dominant language independently of he
other. The population as a whole can stably maintain bothG; and G, through split
states in which one region is dominated byG; and the other by G,. The resulting
(Xn ; Xs) phase portrait has four stable "xed points separated by a variety of unstabk
“xed points, as in Figure 3.2(a).

If "y and " are suzciently large, then the two regions mix strongly with each
other and e®ectively become a single region. This yields phase portraits as in Fig
ure 3.2(d) where the stable population states require both regions to be domated
by the same grammar.

In between, there are intermediate states and a pair of bifurcations representing
the loss of the stable split states, as in Figure 3.2(c). These bifurcationshay be inter-
preted as a model of language change through contact between dialects: Two initigil
separate populations maintain di®erent dialects, but as contact between the regions
increases, they e®ectively become uni ed and one dialect or the other disappears.
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Fig. 3.2 . Phase portraits for (3.26) with "y = "s = . In(a), ~ =0. As ’ increases in (b),
(c), and (d), the "xed points shift until bifurcations wipe ou t the stable split states. In (c), both
stable split states bifurcate at the same value of ~ because of the symmetric choice of "y = "g =~

We may even set the migration parameters' y = “s = 7, put ~ into motion as a

function of t, and visualize the change as a time trace as in Figure 3.3. We start the
population near the split state closest to (2; 0), which represents a population whose
northern region usesG; and whose southern region use&,. At rst, the population
tracks the stable split state as it shifts, and maintains both grammars. Once” is
large enough, the bifurcation occurs and the stable split state vanishes. Then the
population converges quickly to the single-language xed point near (§0), and G;
becomes essentially extinct.

As a nal detail, since all trajectories tend to a “xed point in this model, the di-
mension reduction theorems guarantee that the full measure-valued dynamical system
has the same asymptotic behavior for any admissible learning functiory: All trajec-
tories converge to a steady-state probability measure. For small values df, there are
stable split states, but as” increases, a bifurcation eliminates those split-state xed
points.

3.2.1. The loss of V2 in English. There is a change in word order in Middle
English that is thought to have been caused by contact between di®erent grammars.
Middle English can be divided into two or more regional dialects. Initially, all had
some form of theverb-secondor V2 rule, still present in modern German, which moved
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Fig. 3.3 . Values of xy (solid) and xs (dotted) as functions of time, starting from  xy Y21 and
Xs %0, where "y = s =~ and ~ (dashed) increases linearly as a function of time. The popul ation
state (xn ;Xg) tracks the stable "xed point representing a split state until  the bifurcation annihilates
it around t =65. Then the population converges quickly to the single-langu age xed point near (0;0)
representing the extinction of Gj.

the "nite verb to the front of the sentence, and a topic in front of that. Northern
Middle English already had a di®erent form of V2 than southern Middle English be-
cause of contact with Norse-speaking settlers. Apparently, increased contact beeen
the northern and southern dialects led to the development of a non-V2 word order
similar to Modern English [25, 30]. Although this scenario is somewhat mee com-
plicated than the two-grammar choice studied here, the two-grammar dynamics and
bifurcation still give some insight into how contact can lead to languagechange.

3.3. A single binary choice in continuous space. As an alternative to a
compartment model, we will consider in this section a population spatially digributed
over a circle, soS is the interval [0; 1] with periodic boundary points. As before, an
individual's speech pattern is represented by a usage rate between 0 and 1. Initigl
the model is in integral form, but it can be related to a reaction-di®usion equatio,
and we will investigate the possibility of traveling wave solutions, which represent
the spread of a language change. The traveling wave can be related to a phonology
change taking place in Pennsylvania.

To simplify this example, we assume thatmg is xed at a uniform distribution,

Mo (dx) = dx

and omit explicit dependence onmg where possible. The migration kernel- (ds;x)
is assumed to have a peak with mirror symmetry centered atx when viewed as a
function of s. In particular, for each x,
Z
(sj x):(ds;x)=0:
s2S
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Thus, the population e®ectively di®uses through space.
We assume that the mean of the learning distribution g has a smooth sigmoid-
shaped density functiong(p) as in Figure 3.1,
z
g(p) = N Z Qoc (p; d2) (3.27)

z2[0

Additionally, A(x; ® must also have a peak with mirror symmetry centered at
X, indicating that the greatest in°uence is from nearby speakers. Since we will be
holding the spatial distribution mg constant and uniform, A~ mg is constant. The
assumed form ofA means that A~ * is a scaled smoothing of .

3.3.1. Connection to a reaction-di®usion equation. Continuing from Sec-
tion 2.4, it is natural to consider cases wherem; has a smooth time-dependent density
w with respect to Lebesgue measure,

my(dx) = w(x)dx

and use asymptotic arguments to relate them; dynamics to a reaction-di®usion equa-
tion in w. Because of the assumptions o\, the local average usage rate passed to
Goc IS nearly an identity transformation,

(A~ my)(x) ,

———= Yaw(X

R~ mo(x)

This means that the learning term in (2.22) is a sort of local average of a gmoid,
z VR 1
(A~ my)(x)
G(w;x) = z — = -dz
(W) o e (A~ mo)(x) (3.28)
Yag(w(x)):

Using a series forw about x and dropping terms of higher order than quadratic,
the w dynamics derived from the m; dynamics of (2.22) become (suppressing the
explicit dependence ofw on t)

@w(x) = GW;X) i W(X)
Z W

@wx) f
_ w(X) i @W(X)(si X)+ = (si x)? - (ds;x) (3.29)
i kw(x)+ ¢¢¢
Integrating term by term,
@w(x) = G(w;ﬁi w(x) q uz q
+ w(x) ~(ds;x) i @w(X) (si x)-(ds;x)
L S?[JSZ ﬂ s2S
FS@w) (s> (dsixn) i keow(x) + cee
s2S

_ . R , R
the rstintegral - (ds;x) = k(x) cancels out. The second integral _(sj x)- (ds;X) =
0 because: is assumed to have mirror symmetry aboutx. The remaining integral
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Fig. 3.4 . Graph of A(x; 0).

R

J(si x)?- (ds; x) is some function we will denote¥#(x) that represents the space-
dependent variance of- . Dropping the remaining terms, we are left with a reaction-
di®usion partial di®erential equation [11, 14],

#(X) @w(x): (3.30)

@v(x)= GW:X) i W)+

If as supposedG(w; x) ¥4 g(w(x)), then G(w;x)i w(x) will be roughly a cubic-shaped
function of w(x), and this equation will have traveling wave solutions [11, Section 4.2].
The interpretation of such a solution is that a language change can begin atme point
and propagate throughout the space.

With this connection to reaction-di®usion equations, it is reasonable to suppose
that the measure dynamics may exhibit solutions typical of reaction-di®usion equa-
tions, such as traveling waves, di®usive Turing instabilities, and pattern femation,
depending on the speci ¢ choice of}, K, and J.

3.3.2. Some numerical results. We now examine some pictures of the measuif§-
valued dynamics at work. To keep the numerics simple, the choice 08 is a circle
S! represented as the interval [01] with periodic boundary conditions. The fea-
ture extraction operator T takes a space-dependent probability measure to its space-
dependent mean, with an in°uence kernel

128

s4ag (1 + COS /(x| s)®

A(x;s) =
representing the assumption that children learn from the average speech patternsfo
nearby speakers. See Figure 3.4. The 1+ cos structure creates positive functionitiv
a bump around x. The power 8 narrows the bump. The constantRfa,ctor 1286435
ensures that for eachx, the total in°uence is 1, that is (A~ mg)(x) = ,SA(x; s)ds=1.
This normalization is convenient but not strictly necessary becauseA is always used
in a quotient as in (2.20).
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The migration kernel is similar:

16

6435(1 + C0S 2V4X i s))8 ds

- (ds;x) =
with
k(x)~ %:

The population remains uniformly distributed in space and only the speech patterns
change.

The learning function goc(p) is de ned to be a™ -distribution with mean g(p) and
variance p?(1i p)?, whereg is the polynomial sigmoid function depicted in Figure 3.1.
This choice of the variance is so that the -distributions have no singularities in their
densities, which seems to improve numerical stability. The choice of the -distribution
is so that we have a realistic speci ¢ example for this demonstration. Any sigle-mode
family of distributions supported on [0; 1] and determined smoothly by the mean usage
rate would work as well.

The calculations are performed by a Mathematica notebook. At each time step,
u(t; x; z) is represented by samples forX;z) 2 [0; 1] £ [0; 1] based on the function's
value at each point on a 64 by 65 grid. Each step in the numerical method is @m

uler step in t with step size Q1, followed by a normalization step that ensures
01 u(t;x;z)dz = 1 for every x on the grid. Integrals are computed using the trapezoid
rule. Since these “gures are for demonstration purposes and no numerical instability
is apparent, there is no need at this point for more sophisticated numerical methods

The results of the u dynamics are shown in Figure 3.5. The results of Section 2
apply, so the asymptotic behavior ofu re°ects the asymptotic behavior of the feature
dynamics. Sincemg is "xed, the interesting feature is the location-dependent mean
usage ratem;. The corresponding m; dynamics are shown in Figure 3.6. There
are two spatially uniform steady states given by mi; = a solution to g(m) = m.
These represent the states where everyone everywhere strongly prefers one idealized
grammar over the other.

The initial condition in these "gures represents a population where half of the
population, centered aboutx = 1=2, prefersG; and the other half prefers G,. Near
the boundaries at 1=4 and 3=4, the two mix due to migration. Since the sigmoid
function is slightly asymmetric in favor of G,, the preference forG, tends to spread.
Two waves develop, travel toward each other, and meet in the middle, resulting in
the disappearance ofG;. Since the m; dynamics show that the initial condition is
attracted to that steady state, the full u dynamics must be attracted to a parallel
steady state.

The m; computation is substantially faster than the full measure dynamics. The
good agreement of theu and m; calculations shows that the dimension-reduction
results are of practical as well as theoretical value.

It is also possible to do numerical experiments with the reaction-di®usion equa-
tion (3.30). Using Mathematica's built-in numerical solver and the approximation
G(w; x) ¥ g(w(x)), we obtain the pictures in Figure 3.7. This calculation is even
faster than the m; dynamics. Compared to theu and m; dynamics, the w dynam-
ics are qualitatively the same: Two waves meet in the middle andG; goes extinct.
However, the waves take about 5 times as long to disappear, which suggests ththe
approximation (3.28) for G(w; x) is too crude.
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Fig. 3.5 . Density plots of u(t;x;z) for t =0;2;4;::: reading left to right and top to bottom. In
each plot, the lighter colors represent higher values of u and the darker colors represent values close
to 0. The horizontal axis is x 2 [0;1] and the vertical axis is z 2 [0; 1].

3.3.3. An example of a traveling wave from the linguistics literatu re. A
well-studied feature of speech in western Pennsylvania is the so-calléow back merger,
in which the low back vowels as incot and caught are no longer distinguished. Data
collected in 1940 and 1988, as displayed in [16], indicates that the region inhich the
vowels are merged is growing. The eastern boundary is moving to the east, and ga
of the wave seems to have stopped at the Susquehanna river and the Pennsylvania
German region. Other parts of the boundary coincide \with a weakness in the face-
to-face oral communication network, as indicated by population density and tratc
patterns" [16, p. 171{172]. This barrier indicates that the process by which the
change spreads is spatial and local (although [16] discusses a second region ineas
Pennsylvania where the merger seems to have arisen more or less independently).
Furthermore, there is inherent asymmetry in the acquisition of the vowel systemwith
the merger compared to the vowel system without it: In the presence of speakers
that use the merged system frequently, a child will have less evidence that the vowgl
are distinct, making the acquisition and use of the non-merged vowel system more
unlikely.

The model described here in Section 3.3 agrees qualitatively with the linguistic
data. A combination of local in°uence and migration, in conjunction with asymmetric
learning tendencies, sutce to create a traveling wave in which one grammar disappears
in favor of the other.

4. Discussion and conclusion.  We began by considering the dynamics of a
population of individuals whose speech patterns are variable. Each individua$ state,
including a location and a speech patten, is represented as an element of a set -.
The population is represented as a probability measure on -, and learning, birth, and
migration cause it to evolve deterministically. If children learn primarily from some
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Fig. 3.6 . Plots of my(t;x) for t = 0;2;4;::: reading left to right and top to bottom. The
horizontal axis is x 2 [0;1] and the vertical axis is m 2 [0; 1].

average feature of the population, then it is tempting to formulate the dynamicsin
some simpler Banach space rather than try to deal with the measure dynamics. How
ever, there is some question as to whether the resulting mean- eld feature dynamics
accurately represent the original measure dynamics.

The proofs in this paper demonstrate that for a general class of non-linear learn-
ing algorithms and linear migration processes, the measure dynamics can indeed be
reduced to a dynamical subsystem in an appropriate Banach space without losing
any essential information. If the feature dynamics are simple enough that altrajec-
tories converge to some limit cycle or “xed point, then the same is true of he original
measure dynamics, and a single observation of the state of the feature dynamicsif-
“ces to give an approximation to the corresponding state of the measure dynamics
that improves exponentially as time advances. However, if the feature dynamicsra
chaotic, then sensitive dependence on initial conditions makes it practically imposble
to recover the state of the measure dynamics from a single observation of thedture
dynamics.

We explored a scenario in which children must learn rates at which to use two
alternative grammatical constructions to communicate a single meaning. We asume
that children learn only from the mean usage rates. In the case of a well-mixedirsgle-
compartment population, the one-dimensional mean- eld dynamics have two stable
“xed points, one for each alternative construction. An unstable xed point separates
their basins of attraction. For a population with two compartments, childr en learn
only from the mean usage rate within their native compartment. The resulting feature
dynamics are two dimensional. If there is very low migration between the regios, then
stable split states are possible, in which one compartment prefers one gramatical
option and the other compartment prefers the other. As the migration rate increa®s,
the compartments e®ectively merge. Bifurcations take place that annihilate the sthle
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Fig. 3.7 . Plots of w(t;x) for t = 0;10;20;::: reading left to right and top to bottom. The
horizontal axis is x 2 [0;1] and the vertical axis is w 2 [0;1]. Note the di®erence in time scale
compared to Figures 3.5 and 3.6.

split states, and the entire population ends up with a single preferred choice. This
scenario suggests a mechanism by which increased contact among dialects can lead to
the extinction of one of them, as seems to have happened in the loss of the verb-second
property of Middle English. The mathematical framework for the two-compartm ent
population dynamics could be extended to deal with many compartments.

In addition, we considered the same grammatical scenario with a continuous rep-
resentation of space. We assume that children learn from other individuals based
on their proximity, so the dominant in°uence is a mean speech pattern weighted by
a spatial in°uence kernel. After verifying that the general mathematical machinery
applies, we used an asymptotic argument to relate the feature dynamics to a reaicn-
di®usion equation, which suggests that the feature and measure dynamics might have
traveling wave solutions. A numerical experiment further supports the existence b
such solutions. The traveling wave seen in the numerical experiment is assotéd with
the disappearance of one grammar in favor of the other, which agrees qualitaely
with observations by Herold of a change in the vowel system spreading eastwarin
western Pennsylvania [16].

Throughout, the spatial component of - has been interpreted as being literally
spatial. However, it is certainly possible to include social or economic stats using
exactly the same mathematics. All that changes is the interpretation: compartnents
might represent social classes, and a continuous scale could represent wealth. kg
tion would then include social and economic mobility.

Similarly, the elements ofL in the examples have all been usage rates of idealized
grammars. More generally, any Banach-space-valued feature of speech could be used,
for example, the frequencies of vowel formants [22, 23].

There are several shortcomings of this general modeling framework and the spe-
ci ¢ examples. These provide opportunities for further research.
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First, the feature dynamics assume that the population is large enough that chi
dren see only mean features. A more realistic model would directly take into acamt
the discrete nature of human populations and the fact that children learn from a lage
but "nite number of sentences spoken primarily by individuals that they have spatial
and social proximity to. See for example [5, 12, 29, 44] for learning modelsased on
simulated sentences. It should be possible to prove that under certain hypotheses,
discrete nite population models in the framework of Section 2 converge to contiuous
in nite population models.

Second, we have assumed throughout that migration is independent of language,
which simpli'es the mathematics but is unrealistic. People tend to form social and
economic neighborhoods within cities, for example, and language is correlated thi
these factors. Adults can change their speech patterns as they age and move among
social classes. People also tend to sort themselves spatially into culturglland lin-
guistically homogeneous clusters. To model these e®ects, the framework discussed
here would have to be adapted to allowK and J to depend onx and u, thereby
introducing additional nonlinearities into the u dynamics.

Third, we have assumed that each individual's speech pattern is drawn from an
unconditional probability distribution, but people are known to change their speech
pattern as they age and within the social context of each conversation. To accourfor
social context, an additional parameter, sayc, would have to be added tou, so that
u(t; x; c) is a probability measure on speech patterns indicating how someone located
at x speaks in social contexic.

An important feature of one- and two-dimensional deterministic continuous dy-
namical systems is that generically all trajectories converge to a xed pointor a limit
cycle. This means that such models of language change are doomed to be \single
shot," meaning they are only able to mimic a single instance of a language change
one direction. Some external force is required to push the model to repeat or reverse
the change. For example, the traveling wave in Section 3.3 models the merger of two
vowels. Given that vowels can merge, that known languages have been experiencing
phonemic change for centuries, and that languages exist with as few as three phonem-
ically distinct vowels, it is paradoxical that any language has more than a éw vowels.
The resolution is that there are competing forces that can cause vowels to splisuch
as is happening with the shorta vowel in some northern dialects of English in the
United States [24]. To model a °uctuating vowel system in which vowels merge, spli
and shift would require a higher dimensional representation of individual speech pat-
terns, plus some source of random °uctuations. That would give room for a merger
in one part of the vowel inventory to be followed by a split elsewhere, preventig a
total collapse, and eventually a restoration of a lost distinction.

In summary, the framework outlined in this article puts certain mean- eld models
of language variation and change on a more secure mathematical footing asductions
of measure-valued dynamical systems. Speci cally, it provides a way to eliminate
the simplifying assumption that individuals use a single idealized grammar. 1 also
provides for spatially and socially distributed dynamics. Further studies could include
relaxing the assumption that the learning and spatial dynamics are independent, and
the incorporation of age structure. These possibilities will be addressed irfuture
articles.
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