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Chapter 1

Inferring Leadership Structure From

Data on a Syntax Change in English

by W. Garrett Mitchener

Abstract: In a typical human population, some features of the lan-

guage are bound to be in flux. Variation in each individual’s usage rates of

optional features reflects language change in progress. Sociolinguistic sur-

veys have determined that some individuals use new features to a greater

degree than the population average, that is, they seem to be leading the

change. This article describes a mathematical model of the spread of lan-

guage change inspired by a model from population genetics. It incorporates

the premise that some individuals are linguistic leaders and exert more in-

fluence on the speech of learning children than others. Using historical data

from the rise of do-support in English, a maximum likelihood calculation

yields an estimate for the influence ratio used in the model. The influence

ratio so inferred indicates that 19 of the 200 simulated individuals account

for 95% of the total influence, confirming that language change may be

driven by a relatively small group of leaders. The model can be improved

in any number of ways, but additional features must be selected carefully

so as not to produce a computationally intractable inference problem. This

project demonstrates how data and techniques from different subfields of

linguistics can be combined within a mathematical model to reveal other-

wise inaccessible information about language variation and change.

1.1 Introduction

The purpose of this chapter is to introduce a sociolinguistic mathematical

model of a structured population of speakers and integrate it with histor-

ical data. The project began with a conversation between the author and

mathematical biologist Martin Nowak, in which the question at hand was

1
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originally posed as: Given data from a language change, is it possible to

infer a population size, and what would that number actually mean? The

idea of inferring a population size might suggest trying to estimate how

many people lived in medieval England based on the writings of Chaucer,

but this is not what that question is meant to ask. Rather, the intent is to

formulate a mathematical model with some parameter that represents the

number of individuals relevant to some feature of the overall population,

such as the size of an average town or friendship network, then to estimate

the value of that parameter from data. There are many potentially appli-

cable mathematical models in the population genetics literature in which

several genetic variants of a particular species are present, but one of them

eventually takes over the entire population. This is called fixation. It seems

reasonable to interpret variants of a language analogously to genetic vari-

ants of a species and to investigate what data about one variant’s route

to fixation might say about the underlying population. Specifically, the

original question of inferring a population size is better posed as follows:

Is the population homogeneous, or are some individuals more important

than others in driving the change? Is there perhaps a small core of lead-

ers that switch to a new language variant, and the rest of the population

simply learns from them and reflects their speech patterns? Inferring a size

from language change data would presumably reflect the size of this core.

The central task of this chapter is to explain how such a calculation can

be carried out, thereby reconstructing the linguistic leadership structure of

medieval English society from data on a change in syntax.

The model developed here adapts a genetic model to incorporate so-

ciolinguistic observations. It is then fit to historical data from a syntax

change in English. The inferred parameter yields an estimate for the size

of the leadership core. This project is part of a growing body of syntheses

of linguistic fields and mathematical modeling methods that were generally

not combined until the 1990s or so. Some remarks are in order about the

challenges and potential of such syntheses.

Mathematics has traditionally been applied with great success to lin-

guistic sub-fields related to formal grammar and the idealized speaker.1

Statistical studies are essential for understanding language variation and

change. Linguists typically use well established tools such as hypothesis

tests, varbrul, or anova, but these tools have their limits. Recent stud-

ies have taken advantage of ever more sophisticated statistical models for

1See for example [Chomsky (1965, 1972, 1988); Tesar and Smolensky (2000); Joshi and
Schabes (1997); Kroch and Joshi (1985); Stabler (1997); Fong (2005)].
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analyzing historical data [Kroch (1989); Warnow (1997)]. This chapter in-

troduces a new kind of tool to this collection and shows how it can deduce

unexpected information from well known data.

The use of biological models as bases for linguistic models has been

very useful in recent studies of the biological evolution of language,2 and

the study of language change on historical time scales.3 For example, the

logistic sigmoid function, a well known model of the S-curve characteris-

tic of language change, has its roots in the study of population growth in

a constrained environment. Many introductory textbooks on differential

equations teach logistic growth in conjunction with census data; for exam-

ple there is a project on the subject in [Edwards and Penney (2008)]. It

should be noted that the statistical curve fitting method in that project is

somewhat suspect, but since it is within a textbook for a first course on

differential equations, there is justification for not choosing a more robust

method that might distract students from the primary topic. However, this

textbook project highlights a cultural difficulty within mathematics. The

mathematical subfield of dynamical systems focuses on the precise and the

nonlinear. Statistical inference on the other hand must deal with noisy dis-

crete data, and is frequently limited to linear methods. Combining these

two fields correctly can be difficult, and as in the textbook, circumstances

often dictate that one field be sacrificed in favor of the other. A better

resolution is to use tools from the areas where dynamical systems theory

and statistics overlap: Markov chains, and maximum likelihood inference

methods.

In addition to mathematical cultural difficulties, this project attempts

to combine historical linguistics and sociolinguistics in an unusual way. So-

ciolinguists have established that social networks contribute to the spread

of language changes [Labov (1994, 2001, 2007)]. Present-day investigations

can partially identify the relevant social structures from inteviews that re-

veal details about the friendship networks and speech patterns of many in-

dividuals. Such studies that produce a snapshot of the state of a language

2See for example [Nowak and Krakauer (1999); Nowak et al. (1999b); Trapa and Nowak
(2000); Komarova and Nowak (2001a); Nowak et al. (1999a, 2000); Plotkin and Nowak
(2000); Nowak et al. (2001); Komarova and Nowak (2001b); Nowak et al. (2002); Nowak
and Komarova (2001); Komarova et al. (2001); Cangelosi and Parisi (2002); Mitchener
(2003a); Mitchener and Nowak (2003); Mitchener (2003b); Mitchener and Nowak (2004);
Mitchener (2007)]
3See for example [Gibson and Wexler (1994); Niyogi (1998); Niyogi and Berwick (1996,

1997b,a); Niyogi (2006); Kirby (2001); Kirby and Hurford (2002); Briscoe (2000, 2002);
Cucker et al. (2004); Gold (1967); Pearl and Weinberg (2007); Yang (2002)]
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at a single moment in time are called synchronic. For example, one might

spend a few months recording spontaneous speech by one hundred individ-

uals of varying ages, then estimate the formant frequencies in their vowels

or how often they use certain syntactic alternatives. Assuming that adult

speech changes very little, the age variation indicates speech patterns going

back in time several decades in what is called apparent time. The interviews

might also include information about socio-economic class and friendships,

indicating how one person’s speech might influence another’s. Unfortu-

nately, the data acquired via interviews takes so much time to gather that

the data sets are often far sparser than statisticians would like. Further-

more, interviews and social networking data are generally not available for

studying language changes older than the present oldest generation.

Studies of linguistic data across several decades or centuries are called

diachronic because they compare language use from two or more separated

time periods. Corpora consisting of written documents from a across a wide

range of time are essential to such studies. Sociolingustic studies sometimes

include follow-up interviews years or decades after an initial study, but such

projects cannot span the centuries that corpus studies can. Unfortunately,

corpora are analogous to fossils or archaeological discoveries in that present-

day scientists have no control over the content of ancient documents, or

which documents survive to be included in a corpus. Furthermore, the

written record contains plenty of linguistic information, but the written

language is often distinct from the spoken language in ways that cannot be

confirmed centuries later.

The data set of interest for this project is from the change in late Middle

English syntax from verb-raising to do-support [Elleg̊ard (1953)]. In verb-

raising syntax, main verbs are raised from a low position in the syntax

tree to various high positions. This means that the main verb raises above

the subject, yielding inverted questions, and the main verb raises above

negation, so it appears before not :

(1.1) Know you what time it is?

(1.2) I know not what time it is.

In do-support syntax, the main verb is restricted to a low position in the

syntax tree, so when a verb is needed to fill a high position, the auxiliary

verb do must be inserted:

(1.3) Do you know what time it is?
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(1.4) I don’t know what time it is.

Affirmative declarative statements have the same surface form under both

grammars; the insertion of do in this case is actually forbidden under the

do-support grammar:

(1.5) I know what time it is.

(1.6) *I do know what time it is.

The * indicates an ungrammatical utterance. The second example can

be made grammatical by stressing the do, which changes the meaning to

indicate that the speaker is contradicting a previously made statement.

Without that stress, the do is ungrammatical. Oddly, the insertion of do

is also ungrammatical for affirmative subject questions without stress:

(1.7) Who knows what time it is?

(1.8) *Who does know what time it is?

A previous study of the do-support data by Kroch [Kroch (1989)] fit a

logistic sigmoid

y =
1

1 + e−a(t−t1/2)
(1.9)

to the S-curve of the usage rate y of do-support over time t. The notation

t1/2 refers to the fact that when t = t1/2, y = 1/2. Such a function may

be grounded in a logistic population model where the rate of spread of a

feature is jointly proportional to the fraction of people who have it and the

fraction who do not, as in the logistic differential equation

dy

dt
= ay(1 − y)

to which the function (1.9) is the general solution. The logistic model

assumes an infinite, unstructured, homogeneous population. The point of

the calculations in [Kroch (1989)] was to infer the rate constant a and

demonstrate that the rise of do-support in all different kinds of sentences

was governed by the same rate constant, although the time offsets t1/2

differ. Kroch names this result the constant rate effect . Infelicities of the

logistic model, such as the fact that it admits populations with a fractional

number of people, were not important, nor was the overall population size.

In the interest of inferring a population size from the do-support data,

we turn to mathematical population genetics. One of the simplest and

most flexible tools for working with finite populations is the Moran model
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[Nowak (2006)]. The population consists of a finite number of agents, each

of which is in one of a fixed number of states. An agent is removed to

simulate death, and a new one is created by cloning a randomly selected

agent thereby simulating birth. Since births and deaths are paired, the

overall population size is fixed.

The mathematical framework at work is the discrete time, finite state

space Markov chain: At each time step, the population is in one of a large

but finite number of possible states. The dynamics specify that given the

current state, the population changes randomly to a new state at the next

time step, but the probability of selecting each possible new state is a

deterministic function of its current state. It is possible, though often

computationally infeasible, to use a vector to represent the probability that

the population is in each possible state at a given time step. A stochastic

matrix can be used to represent the transition process, and multiplying the

distribution vector by the transition matrix gives the distribution vector for

the next time step. A computer program with a random number generator

can implement the transition process and output a stream of states, that

is, a sample trajectory of the model.

The variable influence model in this project starts with the Moran

model, but assumes that individuals have different degrees of influence on

the speech of others. The cloning step is therefore modified to take influence

into account. Initially, most of the agents are in a state representing the

old language. A few influential agents start in a different state representing

the new language. New agents are more likely to be cloned from the more

influential agent, so the new language will spread and is likely to take over.

The state of each individual agent must be recorded, which makes for much

more complex calculations compared to the original Moran model and the

logistic model, in each of which the population state is a single number.

The main difficulty is that there are so many possible population states

that the vector-and-matrix representation of the Markov chain is compu-

tationally infeasible. Instead, the only way to investigate its behavior is to

accumulate many sample trajectories and take some sort of average. There-

fore, several simplifying assumptions are necessary to formulate a model for

which the calculations are feasible. A further complication is determining

when enough samples have been collected, so the analysis of the samples

will be done two different ways. One is a straightforward average and the

other estimates the same average from an approximate density. Based on

samples collected over a year of computer time, the two calculations agree,

which suggests that we have enough samples. So, despite the numerical
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difficulties, it is possible to fit the model to the do-support data. The re-

sult is an estimate of an influence ratio that indicates the extent to which

influence is concentrated in a few individuals.

In the rest of this chapter, we formulate the variable influence model,

then test a range of values of the influence ratio to determine which is

most harmonious with the Middle English data. The calculations strongly

support the conclusion that the population is distinctly skewed, specifi-

cally, that a leadership core of around 19 individuals out of the 200 in the

simulation account for 95% of the total influence.

1.2 The available data

The available data consists of counts of sentence types from clusters of

Middle and Modern English manuscripts and the approximate dates of

those clusters [Elleg̊ard (1953); Kroch (1989)]. The sentences of interest

are different kinds of questions and negative statements, as these clearly

show whether the speaker is generating them with a verb-raising grammar

or a do-support grammar.

Do-support replaced verb-raising in several stages, affecting some types

of sentence before others. The cleanest data is for transitive affirmative

questions, as in ‘Do you want sugar?’ and this subset of the data will be

the focus of the remainder of this chapter. See Figure 1.1 for a graph of

this data.

Fig. 1.1 Occurrence rate of do-support as a fraction of total sentences, for transitive
affirmative questions. The curve is a logistic sigmoid fit to this data via maximum
likelihood.
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1.3 Formulation of the variable influence model

The simulated population consists of n individual agents, with Yi(t) repre-

senting the type of the i-th agent at time step t, i ∈ {0, 1, . . . , n−1}. We fix

n = 200. True speech shows context- and individual-dependent variation,

but at this stage of the modeling process, a simplification is computationally

necessary. We therefore make the simplifying assumption that there are 2

relevant language variants in use, numbered 0 and 1, representing the old

verb-raising and new do-support grammars, respectively. Thus Yi(t) = k

means that at time t, agent i uses variant k exclusively.

The Markov chain has 2n possible states because the type of each in-

dividual must be tracked separately. This means that if the simulated

population is at all large, even 30 individuals, the transition matrix will be

too large to compute with directly.

Let Xk(t) be the number of individuals of type k at time t. Thus, if a

speaker is selected uniformly at random and asked to produce a sentence,

then the sentence is generated by language variant k with probability

Sk(t) =
Xk(t)

n
(1.10)

and for each t, S0(t) + S1(t) = 1.

Let ∆t be the real time associated with a unit change it t. The transition

function from time step t to t + 1 involves examining each agent. With

probability β∆t, the agent is replaced, otherwise it remains unchanged,

that is Yi(t + 1) = Yi(t). To replace it, another agent is selected at random

and its type is used as Yi(t + 1). This operation simulates the birth of a

new individual who chooses a language variant based on the speech of a

single adult. For the calculations in this chapter, ∆t is taken to be one year,

and β = 1/40 so that each agent survives for a geometrically distributed

random lifetime with a mean of 40 years.

To model a population in which all individuals have equal influence on

learning, we would choose the agent to copy in the replacement step uni-

formly at random from among the whole population. For variable influence,

we can assign a score to the i-th slot in the population and choose the agent

to copy with probability proportional to that influence score. We will use

the function bi, where b is the influence ratio, 0 < b ≤ 1. That is, each

individual is a factor b less influential than the next most influential indi-

vidual. If b is close to 1, then influence is spread through a large part of the

population, but if b is even a bit less than 1 then influence is concentrated

in a few individuals.
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In the initial state, most agents are in state 0 to indicate that the popu-

lation was dominated by verb-raising initially, but a few agents are in state

1 to trigger the transition to do-support. For this chapter, the initial state

is that the four most influential agents are in state 1 and the rest are in

state 0. The initial time is interpreted as the year 1410, which is about the

time of the first data point in the corpus. In the long run, the population

will end up in one of two absorbing states, either all state 0 or all state 1.

Historically, the English converged to all state 1.

Some sample trajectories are displayed in Figures 1.2 to 1.4. They were

hand selected from a small random sample to illustrate the impact of b, and

exclude trajectories in which the new language went extinct. For smaller

values of b as in Figure 1.2, the usage rate of the new language increases

too quickly and overshoots the data. For larger values of b as in Figure 1.4,

the population is more influentially uniform, and the trajectory behaves

more like a symmetric random walk, almost as likely to go down as up. An

intermediate value as in Figure 1.3 fits the data better.

The average shapes of trajectories are shown in Figures 1.5 to 1.7. These

display quartiles of samples of many trajectories, and approximately indi-

cate the distribution of the population as a function of time for several

different values of b.

To understand why the trajectories have the shape that they do, con-

sider first the beginning of the change, where only a few of the most in-

fluential agents are in state 1. Each time step replaces approximately βn

agents, and many of the new ones will be clones of influential agents and

therefore type 1. This yields an approximately linear growth in the usage

rate of the new grammar, but slightly concave-up. The curvature happens

because as more influential agents are replaced, the fraction of new agents

of type 1 each step will increase. It is often very slight and does not match

the distinct initial upward curve of the usual sigmoid trajectory of lan-

guage changes, which suggests that some modifications should be made to

the model in future experiments.

The downward curve at the top of the simulated trajectories is at least

qualitatively in agreement with the downward curve typical of language

changes. This curvature happens because once most of the population has

switched to type 1, a large fraction of the agents that get replaced were

already type 1, so the net change of the usage rate of the new grammar is

slower.
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Fig. 1.2 Trajectories, shown as the fraction S1(t) of the population in state 1 as a
function of time. For these runs, b = 0.8. Different runs are marked by different symbols.
Big gray dots mark the do-support usage rate from the corpus.
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Fig. 1.3 Trajectories, shown as the fraction S1(t) of the population in state 1 as a
function of time, for b = 0.85.
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Fig. 1.4 Trajectories, shown as the fraction S1(t) of the population in state 1 as a
function of time, for b = 0.9.
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Fig. 1.5 An ensemble envelope of S1(t) as a function of time. The curves show the
minimum, first quartile, median, third quartile, and maximum at each time step over
5000 sample trajectories, for b = 0.8.
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Fig. 1.6 An ensemble envelope of S1(t) as a function of time, for b = 0.85.
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Fig. 1.7 An ensemble envelope of S1(t) as a function of time, for b = 0.9.
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1.4 Fitting the do-support data

1.4.1 The maximum likelihood method

To represent the data, let t1, t2, . . . be the times at which clusters of

manuscripts are available, and define mk(j) be the number of sentences

of type k found in the manuscripts at time tj .

Any model of linguistic dynamics can be tuned to the manuscript count

data through maximum likelihood. The idea comes from Bayesian inference

[Gelman et al. (2004)]. We are really interested in the value of a parameter

b. Probability theory is a mathematical way to express partial information

about unknown quantities. So we will treat B as a random variable for the

parameter b, and our confidence that B has a particular value is represented

by a probability distribution P (B ∈ db) = p (b) db. Until we obtain data,

our information about B is some prior distribution that incorporates any

assumptions we might need to bring to the model. We assume 0 ≤ B ≤ 1

but any value in this range is equally likely, so the prior is the uninformative

uniform distribution on the interval [0, 1], that is p (b) = 1 (0 ≤ b ≤ 1) .

The addition of data, also treated as a random variable, causes us to

have more confidence in some values than others. This modified knowledge

is represented by a posterior distribution p (b | m).4 Bayes’s formula gives

p (b | m) =
p (m | b) p (b)

p (m)

The distribution p (m | b) is called the likelihood , meaning the probability of

observing the data m given a particular value of the b. Since we are taking

the prior distribution to be the uniform distribution, and since p (m) is the

same no matter what b is, we can treat these as unknown constants and

use the form

p (b | m) ∝ p (m | b) .

The obvious choice of b is one in which we have high confidence after ex-

amining the data, that is, a b for which the posterior is high. Since the

posterior differs from the likelihood by a constant factor, we can choose b

to be the value that maximizes the likelihood. The point of this is that the

likelihood can be computed based on the model of which b is a parameter.

4In classical frequentist statistics, one might assume that B has a normal distribution
with mean µ and variance σ2 and express this information as a confidence interval.

That is, p (b | m) ∝ e−(b−µ)2/σ2

. The Bayesian approach allows the posterior to be
more general.
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By computing it for many values of b, one can then sketch the posterior

distribution up to a scale factor and select the maximum.

Given estimates sk(t) of the population-wide usage rate of variant k at

time t, the likelihood comes from the binomial distribution

p (m | s) =
∏

j

(

m0(j) + m1(j)

m1(j)

)

s0(tj)
m0(j)s1(tj)

m1(j) (1.11)

A straightforward calculation gives an upper bound on the likelihood of

the transitive affirmative do-support data. For each time point tj , there is

a value of ŝj that maximizes

ŝ
m0(j)
j (1 − ŝj)

m1(j)

Putting those values of ŝj in for s0(tj), using s1(tj) = 1 − ŝj , and taking

the product yields the upper bound. It should be noted that a model

can only achieve that bound by over-fitting the data. For the transitive

affirmative question data, the upper bound is 5.48 × 10−10. Let ρ be the

natural logarithm of this upper bound, so ρ = −21.3248. For reference, the

likelihood achieved by the logistic curve in Figure 1.1 is 2.04 × 10−17.

Logistic dynamics yield a fairly simple explicit formula for the likelihood

in terms of two unknown parameters. The curve in Figure 1.1 was drawn

by assuming the form s1(t) = 1/(1 + exp(−a(t − t1/2))) and solving for a

and t1/2.

In contrast, it is not possible to use an explicit formula for the likelihood

with the variable influence Markov chain. Instead, the likelihood must be

computed by conditioning on the population’s complete history. Let H be

the set of all possible histories yi(t) of the population. If y is given, then

the type counts xk(t) and the overall usage rates sk(t) are known in terms

of y. Thus

p (m | b) =
∑

y∈H

p (m | s) p (y | b)

= E (p (m | S))

(1.12)

Unfortunately, the summation over H is computationally infeasible. For

any reasonable population size, such as the modest n = 200 used in this

project, there are too many possible histories. A Monte Carlo method that

averages over a random sample S(b) of possible histories generated with a

particular value of b is the obvious alternative:

p (m | b) ≈
1

|S(b)|

∑

y∈S(b)

p (m | s) (1.13)
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An important property of (1.11) is that if either language variant goes

extinct too early in the trajectory, then for some j, s1(tj) will be one or

zero, thereby zeroing out the entire product. The syntactic change is known

to have taken place, and the old language persisted for some time. Therefore

any sample trajectory in which that change is impossible will be discarded,

that is, we condition on the fact that the Markov chain must be absorbed

into the state of all 1s but not before the old syntax disappears from the

written record.

It should be noted that this calculation is different from what is normally

meant by the terms Markov chain Monte Carlo, in which the goal is to

concoct a Markov chain whose stationary distribution matches some desired

distribution and to then sample from it. Rather, for this model the Markov

chain itself is the random process of primary interest. We are not interested

in a stationary distribution but in trajectories themselves, starting from a

particular starting point and moving toward absorption.

1.4.2 The Monte Carlo calculation

Although the average (1.13) is computationally feasible, it turns out to re-

quire a huge sample size to achieve acceptable results. The core difficulty is

that the trajectories y for which p (m | s) are largest are relatively uncom-

mon, but the corresponding values of p (m | s) are several orders of magni-

tude larger than the likelihood values contributed by bulk of the samples.

In other words, the average (1.13) is dominated by rare events. Figure 1.8

shows a histogram of ln p (m | S) for 500, 000 samples using b = 0.85. That

is, the horizontal scale is logarithmic. For reference, the smallest positive

number representable in the standard 64-bit floating point format is about

2 × 10−308 or about e−708. To avoid hardware underflow errors, the loga-

rithm of the likelihood has to be computed all along. An important reason

to condition on the fact that the change took place is that none of the like-

lihood samples can be zero, for which the logarithm would be undefined.

The author wrote a computer program and ran it sporadically on a

shared computer cluster over the course of a year to generate 170, 000, 000

samples of the log-likelihood for each of 12 different values of b. On this

cluster, the program takes approximately 9.5 hours to produce 500,000

sample runs for each of the 12 values of b, which means that the full data

set required about 3200 hours or about 134 days of cluster computing time.

These samples were then processed in several different ways as described in

the following subsections.
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Fig. 1.8 Histogram of 500,000 samples of ln P (m | S) with b = 0.85.

1.4.3 Direct average

The obvious approximation to the likelihood is a direct average of the sam-

ples as in (1.13). The safest way to compute it is to use a program like Maple

or Mathematica to read the log-likelihood samples, apply exp(·) using arbi-

trary precision arithmetic rather than hardware floating point arithmetic,

and take the average. Likelihood ought to be a smooth function of b, but

it takes many millions of samples to produce a reasonably clean plot. The

results are shown in Figure 1.9. As is typical of Monte Carlo methods, the

accuracy of the result depends on the square-root of the sample size, so the

error bars are fairly large even with 170, 000, 000 samples. Nevertheless, the

likelihood increases dramatically as b decreases from 1 (evenly distributed

influence) to b = 0.85, which indicates that influence is concentrated in a

few members of the population.

The confidence intervals shown in Figure 1.9 are drawn by computing a

sample standard deviation s̄ for the set of likelihood samples, then plotting

±2s̄/
√

|S|, assuming there is sufficient data to invoke the central limit

theorem. Interpreting the confidence intervals, there is enough data to

assert that the maximum is at no less than 0.9 and most likely at 0.85

1.4.4 Fitting the density

It is useful to process the samples a second way to confirm that enough

data has been collected. An alternative to the raw average is to fit a

curve to the log-likelihood histogram and use an integral to compute the

likelihood. To make this process numerically simpler, the log-likelihood
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Fig. 1.9 Estimates of p (m | b) from a direct average. Whiskers indicate a 95% confi-
dence interval.

samples are transformed by subtracting them from the log-upper-bound ρ,

thereby yielding all positive values that can theoretically go all the way

down to 0. That is, given a random history Y and the corresponding X

and S, set Z = ρ − ln p (m | S). A histogram of Z can be obtained from

Figure 1.8 by reflecting it about the vertical axis and shifting it horizontally.

Let p (z | b) be the density function for Z and let f̄(z; b) be an estimate of

p (z | b) obtained through a curve fit. Then

p (m | b) = E (exp Z)

=

∫ ∞

0

eρ−z p (z | b) dz

≈

∫ ∞

0

eρ−z f̄(z; b)dz

(1.14)

This method does not escape from all the difficulties of the direct average

method. The integral is very sensitive to the density near z = 0 because

that is where most of e−z is concentrated, but that is precisely where there

is the least data and the most uncertainty. The curve fit effectively smooths

the histogram in that area.

The algorithm used to fit the density for each value of b is as follows.

Sample histories are transformed into samples for Z, which are then grouped

into bins of width 1. Empty bins are discarded. Each bin Bn contains

numbers z1, z2, . . . ∈ [n, n + 1) which are mapped to the point

(un, vn) =

(

1

|Bn|

∑

i

zi,
|Bn|

|S|

)

(1.15)

where |S| is the total number of samples in all the bins. The left-most

bins usually contain fewer points than the others because high likelihood
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estimates are rare. The average of the numbers in Bn is used for the hori-

zontal coordinate of the point rather than the midpoint of the bin because

it better reflects the off-center numbers in those left-most bins, which yields

more stable likelihood estimates.

Although the shape of the density of Z consists of a smooth hill and a

long tail, it does not seem to be well represented by the commonly occurring

gamma or extreme-value distributions. Instead, a fairly general form was

chosen for the fit function based on trial and error and asymptotic consider-

ations. A polynomial a0+a1λ+a2λ
2 is fit to the log-log points (ln un, ln vn)

with un ≤ 40 using the method of least squares, with each point weighted

by the number of samples in the corresponding bin Bn. The transformation

to Z ensures that all the un are positive so ln un is defined. The weighting is

important because it continues the trend of points not quite at the extreme

left where more data is available, while not ignoring the points derived from

sparser data at the extreme left. This process yields a fit to a function of

the form

f̄(z) = ea0+a1λ+a2λ2

where λ = ln z

= c0z
c1e−c2(ln z)2

(1.16)

with

c0 = ea0 > 0, c1 = a1 > 0, c2 = −a2 > 0,

This form takes advantage of the fact that the graph of (ln un, ln vn) is

fairly smooth, and that we need only fit the left side of the hill. It does not

match the tail of the density, but it does not need to. Only the shape of

the density for small z matters. See Figure 1.10.

A seemingly better fit to the log-log points can be found by including

higher powers of λ. However, for some b values, doing so yields negative

coefficients on the (ln z)3 terms and therefore a singularity as z → 0. The

correct asymptotic behavior at 0 requires that the coefficients on (ln z)2 be

negative and those on (ln z)3 be positive. Then, as z → 0, −(ln z)2 → −∞

and (ln z)3 → −∞, so f̄(z) → 0.

Given those approximate densities, the integral approximations of the

likelihoods are shown in Figure 1.12. The fitting procedure gives 95% con-

fidence intervals for the parameters, which are mapped into confidence in-

tervals for the likelihood estimates. The results are essentially the same as

from using the raw average, as in Figure 1.9, with the maximum at b = 0.85.

This process is particularly sensitive to the value of ρ. The calculations

were carried out once with an incorrect ρ, which resulted in a very noisy
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Fig. 1.10 Top: Log-log plot of (un, vn) and f̄ fit to the points with un ≤ 40, for b = 0.85.
Bottom: Same functions on normal scale. Areas of dots are proportional to ln(|Bn|+1).

likelihood graph with much larger error bars. Therefore, the form (1.16) is

probably not optimal. However, the error bars with the correct ρ are very

small, and the overall shape agrees well with the likelihood estimates from

the direct average.

Monte Carlo method maximum likelihood method

1.5 Results and discussion

To begin, we should compare the likelihood estimates from the two meth-

ods. See Figure 1.13. Both methods indicate that the maximum satisfies

0.8 ≤ b ≤ 0.85. They are largely in agreement, suggesting that 170, 000, 000

is nearly enough samples to estimate p (m | b) across the range of interest.

Let us be overly conservative and consider b = 0.9. Recall that within

the simulation, the influence score of individual i is bi. The ratio of the
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Fig. 1.11 Plot of (un, eρ−unvn) and eρ−z f̄(z) for b = 0.85.
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Fig. 1.12 Estimates of p (m | b) from integrating against a fitted density. Whiskers
indicate a 95% confidence interval.

net influence of the first m individuals to the total influence across the

population indicates the degree to which influence is concentrated among

the most influential individuals. This ratio is plotted in Figure 1.14. The

29 most influential individuals account for 95% of the total influence for

b = 0.9. For b = 0.875, the 23 most influential account for 95%. The b that

maximizes the likelihood appears to be at most b = 0.85, for which the 19

most influential individuals account for 95%.

Even though more samples would help to pin down the correct value of

b, the collected data is definitely more consistent with a variable-influence

population than a flat population: A leadership core of approximately 19

people account for most of the total influence. This suggests that if it were

possible to survey a large number of people and somehow determine who

was most influential on each of their speech patterns, we should expect 19
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Fig. 1.13 Estimates of p (m | b). For each value of b, the black half dot is the estimate
from the direct average and the white half dot is the estimate from integrating against
a fitted density. Whiskers indicate a 95% confidence interval.
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Fig. 1.14 Ratio of the net influence of the first h individuals to the total influence across
the population, as a function of h, for b = 0.9. The gray circle is centered at h = 29,
which accounts for 95%.

or so linguistic leaders for each community within the overall population.

1.6 Future directions

This project focuses on inferring a single macroscopic feature of medieval

English society from data about syntax. However, the results suggest many

improvements, further questions, and other applications of this mathemat-

ical modeling technique.

There is plenty of room for improvement in the variable influence model,



June 2, 2010 16:47 World Scientific Book - 9in x 6in BookWrapper

Inferring Leadership Structure 21

but at a cost. Many of its features as presented here are fixed at some

reasonable value so that b is the only parameter that has to be inferred.

The inescapable difficulty is that adding detail will add variables, which

must then either be set arbitrarily, like the choice of β = 1/40, or inferred

from samples of the Markov chain. There is no reason to suppose that the

unknown variables can be inferred independently in seeking to maximize the

likelihood. That is, if we seek to maximize the likelihood allowing some new

unknown c to vary, the maximum might occur at some bmax and cmax where

bmax is not 0.85 as found here (although it ought to be close). To maximize

the likelihood will require many samples at a much larger set of values

of (b, c), which will require a lot of computer time. Likelihood provides a

metric for how important a particular variable is to the model. If adding the

variable increases the likelihood significantly without overfitting the data,

then it is important and the increase in likelihood quantifies how much.

Otherwise, it can probably be omitted, and computer time can be better

spent on some other feature. On a practical note, the sampling program

could be written more efficiently, but any improvements will probably not

be sufficient to allow for inferring more than two or three interdependent

variables in a reasonable amount of time. New mathematical tools for

dealing with Markov chains such as this model are therefore needed.

To give a specific comparison, the logistic sigmoid in Figure 1.1 fits

the do-support data better than the variable influence model, in that the

likelihood of the data given the sigmoid model (2.04×10−17) is higher than

the likelihood given the variable influence model with the best choice of b

(10−18). This difference is to be expected because the logistic model has two

variables, a and t1/2, but the variable influence model has only one, b. The

difference should not be interpreted as a failure of the variable influence

model, because the two models give different information. Specifically,

the logistic model does not give any information about heterogeneity of

the population. Based on Figure 1.3, the main drawback to the variable

influence model is that its trajectories do not match the slow growth of the

change near its beginning, so refinement should focus first on this feature

to increase the likelihood.

With these concerns in mind, the question naturally arises of whether

the extra effort required by models of this kind is worthwhile. Alternatively,

one could try to run analyses based around a series of hypothesis tests. For

example, we might consider as a null hypothesis that children learn from all

adults in their neighborhood equally, then ask whether a certain data set

allows us to reject this hypothesis at some confidence level. This approach
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has the advantage of being computational easier, and the statistics are

potentially conventional and well understood. However, such a project gives

no indication of the degree to which individuals with varying influence might

drive language change. A hypothesis test may give the result that certain

models are statistically distinct, but it gives no information about what

the difference means, or whether it might be statistically significant but

subordinate to some other stronger force. A varbrul-based analysis might

initially seem to be a reasonable alternative. It gives relative strengths of

various factors on the probability of an overall binary outcome, but it can

only be used if the factors in question are also binary. Estimating the size

of a leadership core is not possible with varbrul, for example.

In contrast, the variable influence model includes a continuous parame-

ter b that indicates the strength of the effect. In the calculations, it ranges

from no effect at b = 1 to concentrating influence in 19 individuals at

b = 0.85. The likelihood calculation allows us to estimate how probable

each value of b is given the data, so we are essentially testing a whole range

of hypotheses rather than two as in a standard hypothesis test.

An obvious improvement would be a more realistic representation of

language usage and the learning process. The variable influence model cur-

rently assumes that children exactly copy one other individual’s speech,

when they should learn from several, including adults and peers. Further-

more, an individual’s state should include more possibilities than using one

language variant or another exclusively. Recognizing that the discrete cat-

egorial tools of formal grammars and idealized speakers are insufficient for

representing the intricate variations of language, there is increasing inter-

est in using probability in conjunction with traditional formalisms to un-

derstand and represent language [Bod et al. (2003); Shannon and Weaver

(1949); Mitchener (2005)]. These features could be incorporated into the

current model and would likely be worth the computational cost.

An additional improvement would be in the interpretation of the

manuscript data. The likelihood formula (1.11) implicitly models the cre-

ation of the corpus by selecting individuals uniformly at random and ask-

ing for a sentence, which is rather näıve. The corpus contains collections

of manuscripts written at estimated times by relatively few speakers in a

variety of genres, and these are the ones that happen to have survived the

centuries and been cataloged by linguists. There is clearly room for an im-

proved model of corpus formation, but it, too, would introduce additional

parameters that must be fixed or inferred.

The present model does not try to account for how leaders arise. Stud-
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ies reported in [Labov (2001, 1994)] suggest that leadership in language

change is determined more by personality, attitude, gender, and friendship

networks than any conventional notion of economic or political power. Fur-

thermore, is not clear how to properly scale the results of Section 1.5 to

larger populations. Simply increasing the population size n is not likely

to affect b significantly because the less influential bulk of the population

effectively copies the proportions of the leadership core. Larger populations

will have more complex social structure, in which some people are very in-

fluential but over distinct subsets of the overall population. The ordered

influence structure used here was simple and gave reasonable results, but it

would be more realistic to represent the population as graph. Agents would

be vertices, edges would indicate linguistic influence, and new agents could

be incorporated through some form of preferential attachment process.5

For example, each new agent might be linked or not to each existing agent

with probability determined by the number of links the existing agent al-

ready has. Another alternative would be to retain the flat structure but use

a function other than bi for the influence of the i-th individual. However,

each of these potential improvements might make it more computationally

demanding to fit the model to the corpus data.

Labov and his collaborators have accumulated considerable data on pho-

netic changes in cities, including information about specific informants who

seem to be leading these changes. It should be possible to fit the variable

influence model to that phonetic data, in which case its conclusions about

leadership structure can be compared to the collected sociological informa-

tion. Such a project would provide an additional means of verifying this

method of statistical analysis.

The model developed in this chapter began as a population genetics

model, although the application is sociological and no explicit use is made

of natural selection. However, it should be possible to adapt the variable

influence model for use in studying biological evolution. Consider for ex-

ample a model of the evolution of imitation posed by Boyd and Richerson

[?]. Their underlying model was a set of individual agents who choose

a behavior based either on their observation of the environment, or by

copying a randomly selected individual when their observation is inconclu-

sive. The mathematics is greatly simplified by assuming that all agents

are essentially interchangeable, and by focusing on the dynamics of average

properties of the population. Leadership structure breaks the assumption

5See [??] and forthcoming articles by Swarup.
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of interchangeability, and may rule out the reduction of the dynamics to

average properties. It would be informative to revisit the Boyd-Richerson

model with leadership structure added in, and see which of their results

still hold and which are modified.

1.7 Conclusion

In conclusion, corpus data concerning the rise of do-support at the ex-

pense of verb-raising, in conjunction with an agent-based population model,

is consistent with the hypothesis that influence is distributed unevenly

through the population. The maximum likelihood method, computed two

different ways from sample runs of the variable influence Markov chain

model, yields an estimate of the influence ratio. That estimate asserts that

approximately 19 out of the 200 people within the simulation account for

95% of the total linguistic influence. This project provides an important

mathematical tool for combining sociolinguistics with historical methods

and sophisticated mathematical models, but there is plenty of room for

improvement.

The author gratefully acknowledges that this project was supported by

a grant from the National Science Foundation (DMS #0734783).

Appendix: Probability and notation

The notation for probability distributions can be confusing, particularly

when mixing continuous and discrete distributions and when conditional

probability is involved. I provide this appendix to assist readers who may

not be as familiar with some of the concepts and my preferred notation.

Whenever possible, a capital letter (as in X) is used for a random vari-

able and the corresponding lower case letter (as in x) is used for a non-

random value that it might take. For instance, the density for X would be

written in terms of x, and a calculation involving random samples would

be written in terms of X .

The notation

P (X ∈ dx) = f(x)dx

indicates that X has a continuous distribution with probability density func-
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tion f , so that

P (a < X < b) =

∫ b

a

f(x)dx

For a random variable N with a discrete distribution, we can write

P (N = n) = g(n)

to indicate that g is the probability mass function for N . A mass function

can also be expressed using delta measures. The symbol δz(x) is special

notation for using an integral
∫

to pick out discrete values of a function:
∫

φ(x)δz(x)dx = φ(z)

so the mass function for N can also be expressed as

P (N ∈ dx) =
∑

n

g(x)δn(x)dx.

The bar notation indicates conditioning. That is, X | Y , read “X given

Y ,” means that we modify the distribution of X by assuming Y is known.

The basic property of conditioning is that

P (X ∈ dx and Y ∈ dy) = P (X ∈ dx | Y = y)P (Y ∈ dy) .

Since you can also condition on X ,

P (X ∈ dx and Y ∈ dy) = P (Y ∈ dy | X = x) P (X ∈ dx) .

Combining the two gives Bayes’s formula,

P (X ∈ dx | Y = y) =
P (Y ∈ dy | X = x) P (X ∈ dx)

P (Y ∈ dy)

which expresses the distribution of X given Y in terms of the distribution

of Y given X . (The dy’s effectively cancel; the details involve the Radon-

Nikodym derivative and are well beyond the scope of this chapter.)

Since it’s usually more convenient to work with densities (or to use delta

measures to pretend that discrete distributions have densities), the notation

p (x) is often used to indicate the density of the random variable X tied by

convention to the same letter in lower case,

P (X ∈ dx) = p (x) dx.

Conditional densities are expressed as

P (X ∈ dx | Y = y) = p (x | y) dx.
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The conditioning formula becomes

p (x, y) = p (x | y) p (y)

and Bayes’s formula becomes

p (x | y) =
p (y | x) p (x)

p (y)
.

Since the p (·) notation is compact and expressive, it is normally overloaded

to indicate the mass function of a discrete random variable as well, as in

p (n). The interested reader must use context to determine the correct

rigorous interpretation for p (·).

The expected value or mean or first moment of a continuous random

variable X is

E (X) =

∫

x P (X ∈ dx) =

∫

xp (x) dx.

For a discrete random variable N , the formula is the same except that the

integral becomes a sum:

E (N) =

∫

x P (N ∈ dx) =

∫

x
∑

n

p (n) δn(x)dx =
∑

n

n p (n) .

The notation for an indicator function is

1 (condition) =

{

1 if the condition is true

0 if the condition is false
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