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Abstract:
Human languages are stable on long time scales but have a ten-
dency to change dramatically in a matter of a few decades. Some
changes can be attributed to contact between languages, but others
seem to be essentially spontaneous. In this project, I explore part
of the machinery of language learning and variation that seems to
contribute to spontaneous changes: Children seem to detect corre-
lations between language variation and age and social status, and
amplify them as they grow up. These effects are called regulariza-
tion and incrementation. To model these, I have formulated a dis-
crete Markov chain, and its limit as a stochastic differential equation,
for a population with two age groups. The population tends to set-
tle at a stable equilibrium dominated by one language variant, then
switch spontaneously to an equilibrium dominated by another. The
mean transition time can be calculated using a related convection-
diffusion PDE, but that turns out to be numerically stiff. Alternatively,
an asymptotic estimate of the mean time between transitions can
be computed using the action functional. I demonstrate the calcula-
tion as performed with the Mathematica computer algebra system.



Language change:

e Middle English (1100 AD to 1500 AD) verb-raising syntax:

� Know you what time it is?

� I know not what time it is.

e Early Modern & Modern English do-support syntax:

� Do you know what time it is?

� I don’t know what time it is.



Problem: Human languages
are stable on long time
scales but can change
spontaneously over decades.

Forces: Children detect
correlations between
language variation and age
and social status, and
amplify them.
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Learning model: Children modify language as they learn

Regularization: Children
sometimes drop rarely used
forms

e Two idealized grammars:
G1 and G2
⇒ only one independent
variable:
e m = mean usage rate of G2

dm

dt
=

birth
︷ ︸︸ ︷

q(m)−
death
︷︸︸︷

m
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Incrementation: Children can
detect and amplify trends

Two age groups:
e ξ = mean speech of young
generation
e ζ = mean speech of old
generation
e r(ξ, ζ) = where children
predict the population will be Prediction function

dξ

dt
=

birth
︷ ︸︸ ︷

q( r(ξ, ζ)
︸ ︷︷ ︸

prediction

)−
aging
︷︸︸︷

ξ
dζ

dt
=

aging
︷︸︸︷

ξ −
death
︷︸︸︷

ζ



Add some random fluctuations:
Start with a Markov chain:
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Fine print about the Markov chain:
e N youth and N parents
e Most general: Each agent in a state k ∈ {0,1, . . . , K}, uses
G2 at a rate k

K

⇒ Simplify K = 1: Each agent uses G1 (state 0) or G2 (state 1)

e Ck = number youth in state k

e Xk =
1
NCk

⇒ Random sentence from uniformly selected youth is type k

with probability Xk

e Dk = number parents in state k

e Yk =
1
NDk

⇒ Random sentence from uniformly selected parent is type k

with probability Yk



e Q(m) = binomial distribution, parameters q(m) & K

Qk(m) =

�

K

k

�

q(m)k(1− q(m))K−k

e rD = death rate: each time step each adult dies with prob-
ability pD =

rD
N , replaced by sampling from youth; each youth

ages with probability pD, replaced by sampling from distribu-
tion vector Q(r(X1, Y1))
⇒ time-in-generation is geometric, mean = N

rD
time steps

⇒ 1 time step = 1
N years

⇒ average life span L = 2N
rD

time steps = 2
rD

years

e rR = resampling rate: each time step each agent copies the
state of a random agent of the same generation with probabil-
ity rR



Limit of infinite population N→∞:

e ξ = fraction of youth using G2
e ζ = fraction of parents using G2

Rescale time: time in units of 1
rD
= L

2 years

Let ϵ =

s

1− (1− rR)2

rD

dξ = (q(r(ξ, ζ))− ξ)dt + ϵ
p

ξ(1− ξ)dBξ

dζ = (ξ− ζ)dt + ϵ
p

ζ(1− ζ)dBζ

where Bξ and Bζ are Brownian motion
e From [1, 5]: (X1, Y1) converges weakly to (ξ, ζ)



Change variables:

θ = rcsin(2ξ− 1) ϕ = rcsin(2ζ− 1)

dθ =

b1(θ,ϕ)
︷ ︸︸ ︷

��

1

2
ϵ2 − 1

�

tnθ+
2q (r(ξ, ζ))− 1

cosθ

�

dt + ϵdBξ

dϕ =

b2(θ,ϕ)
︷ ︸︸ ︷

��

1

2
ϵ2 − 1

�

tnϕ+
sinθ

cosϕ

�

dt + ϵdBζ

Phase space is

R =
�

−
π

2
,
π
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×
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−
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Vector field component:
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Estimating time between transitions:
From [3]: Given an SDE with ϵ noise:

dX = b(X)dt + ϵdB

e The normalized action functional is

S(ƒ ) =
1

2

∫ T

0



ƒ ′(t)− b(ƒ (t))




2 dt

Intuition: This measures how strongly a path ƒ : [0, T] → R

flows against the vector field—how much energy the random
fluctuations must muster. If ƒ solves ′ = b() then S(ƒ ) = 0.



e The quasipotential is

V(0, ) = inf{S(ƒ ) | ƒ (0) = 0, ƒ (T) = }

Intuition: Minimum energy to go from 0 to .
e The exit time from a domain D is

τ =min{t | Xt 6∈ D}

e The expected exit time satisfies

lim
ϵ→0

ϵ2 lnE (τ) =min
y∈∂D

V(0, y)

Intuition: Minimum energy to best exit point y

pick a small ϵ: E (τ) ≈ exp
�

1

ϵ2
min
y∈∂D

V(0, y)

�



Calculation: Pick a small ϵ and compute V. In Mathemat-
ica, set up an InterpolatingFunction for the path ƒ with un-
knowns for its values & derivatives at various times, then use
FindMinimum.
e What to use for D? We really need the basin of attraction
for D, but that’s hard to compute. Instead, pin the ends of ƒ to
the stable fixed points:

runs against the vector 
field, large contribution

runs with the vector 
field, no contributionD

e Once the path leaves D, it
can follow the vector field,
which contributes 0 to the
integral for S
e No need to find exit point y
e Let finish time T increase
and look for convergence
e Let ϵ = 0.02 . . .



Bottom to top:
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Why two dimensions are necessary:
From [3]: For an SDE dX = b(X)dt + ϵdB, if the vector field b

is a gradient (always true in one dimension) then everything
is simpler.
e Learning with no age groups, no incrementation, no predic-
tion:

dξ = (q(ξ)− ξ)dt + ϵ
p

ξ(1− ξ)dB

e Change variables θ = rcsin(2ξ− 1)

dθ =

b(θ)
︷ ︸︸ ︷

��

1

2
ϵ2 − 1

�

tnθ+
2q(ξ)− 1
cosθ

�

dt + ϵdB



e Define

U(θ0, θ) = −
∫ θ

θ0

b(s)ds

e From [3]: There’s only one boundary point θC, and the mini-
mum V is simple:

V(θL, θC) = 2U(θL, θC) ≈ 0.123923

⇒ Mean transition time from left to right

E (τ) ≈ exp
�

1

ϵ2
V(θL, θC)

�

≈ 3.53612× 10134

⇒ That language isn’t going to change any time soon!



Intuition: The fluctuations have to overcome the vector field
all the way from the stable fixed point to the unstable tipping
point in the center. Eventually it must happen but it takes too
much energy to occur on a reasonable time scale.
With two dimensions, the separatrix can be very close to the
stable fixed point. With less of the vector field to overcome,
the fluctuations can push the population state into another
basin of attraction more easily.



What goes wrong with PDE approach:
e From [3]: Given a general SDE

dX = b(X)dt + σ(X)dB, (X) = σ(X)σ∗(X)

the corresponding differential operator is

L =
1

2

∑

,j

,j()∂2,j() +
∑



b()∂()

e The solution to

L = −1 on D,  = 0 on ∂D

is
() = E (τ | start at )



e Could set it up on D = a small disk around the stable fixed
point, solve with a finite element method
⇒ But: numerically unstable, results are nonsense

Even in one dimension, the
calculation is difficult
because of the outside
boundary conditions:
Specifying (−π/2) = 0
results in a numerical
singularity.

-1.5 -1.0 -0.5 0.0
0

500 000

1.0 ´ 106

1.5 ´ 106

Θ

u

Mean exit time from θL via diff
eq, using (θC) = 0 and
(−(1− 10−6)π/2) = 0 to avoid
boundary singularity.

Intuition: The solution is a plateau, and the edges are very
difficult to resolve numerically.



Conclusion:
e Formulated population dynamics with learning, including reg-
ularization and incrementation
e Mean time between transitions from one stable fixed point
to the other:
⇒ Represents language change
⇒ Can be calculated with a PDE, but numerically unstable
⇒ Better to use an asymptotic approximation using the action
functional
e Example calculation: Mean transition times on the order of
10 lifespans
⇒ Without age groups and incrementation: The model is first
order, but the transition time is many orders of magnitude too
large
⇒ Some sort of second order dynamics is necessary
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