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Abstract

Human language is a complex communication system with unlimited

expressibility. Children spontaneously develop a native language by ex-

posure to linguistic data from their speech community. Over historical

time, languages change dramatically and unpredictably by accumulation

of small changes and by interaction with other languages. We have pre-

viously developed a mathematical model for the acquisition and evolu-

tion of language in heterogeneous populations of speakers. This model

is based on game dynamical equations with learning. Here we show that

simple examples of such equations can display complex limit cycles and

chaos. Hence, language dynamical equations mimic complicated and un-

predictable changes of languages over time. In terms of evolutionary

game theory, we note that imperfect learning can induce chaotic switching

among strict Nash equilibria.
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1 Introduction

Human language consists of a stream of sounds that give rise to phonemes,
words, phrases, sentences, poetry, and publications. Grammar is the inter-
nal computational system of language (Jackendoff, 2002; Pinker, 1990). Native
speakers have a subconscious, internal representation of a grammar, which en-
ables them to generate and understand sentences of their language. Children
build this internal grammar by generalizing from linguistic data they receive
from their speech community (Lightfoot, 1991, 1999). Languages change over
time. The purpose of this research is to model language change using tools from
evolutionary game dynamics, and to use such models to gain insight into the
evolution of the language faculty.

Given an unrestricted set of languages and the problem of identifying a
target language based on a sequence of example sentences, no learning algorithm
can guarantee that it will correctly identify every possible target in finite time
(Angluin, 1987; Gold, 1967; Nowak et al., 2002; Osherson et al., 1986; Valiant,
1984; Vapnik, 1995). Universal grammar or UG specifies the restricted set
of languages that is learnable by the human brain (Chomsky, 1988). UG is
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influenced by evolution; it is a consequence of the architecture of our brain,
which in turn is genetically determined (Hauser, 1996; Lai et al., 2001; Nowak
et al., 2001).

Languages are not static. Phonological systems tend to change systemati-
cally yet unpredictably, as in Grimm’s Law, which describes consonant changes
from Proto-Indo-European to Germanic languages, and vowel shifts such as
those taking place in English (Trask, 1996). Contact with other languages can
bring about catastrophic changes in syntax. For example, the loss of case end-
ings on nouns in Old English is thought to be due to contact with Old Norse
(Lightfoot, 1999). Language change also has the potential for oscillations, such
as the morphology type cycle. Languages tend to use either isolating mor-
phology, with many small words each carrying a single piece of meaning, or
agglutinating morphology, in which words consist of a stem plus many affixes
carrying a single piece of meaning, or inflecting morphology, in which each affix
carries many pieces of meaning. Roughly, languages tend to change from isolat-
ing to agglutinating to inflecting and back to isolating (Crowley, 1998). English,
for example, has lost case endings and other forms of inflection and is changing
from inflecting to isolating morphology.

Changes such as these arise through learning error, meaning that a child
has acquired a grammar different from the parents’. Errors arise when the
primary linguistic data fails to trigger the acquisition of the expected grammar,
as may happen when the data underspecifies the grammar or is inconsistent with
every available hypothesis. Such data can arise from natural variation in speech
and when sample sentences are drawn from multiple grammars as in language
contact. Acquisition is often robust enough to ignore meaningless variation and
detect the presence of multiple languages, resulting in bilingualism. However,
this is not always the case, and history shows that learning errors are possible.

We would like to use mathematical models to study language change. Several
different models have been proposed (Briscoe, 2000; Cangelosi & Parisi, 2001;
Hurford et al., 1998; Kirby, 2001; Niyogi & Berwick, 1996; Steels, 1996). The
goal of this paper is to display instances of a model developed by Nowak et al.

(2001) that are as simple as possible and also exhibit change and sensitivity
analogous to that observed in real languages.

2 The Model

Let us consider a group of individuals whose UG admits a finite set of grammars
G1, G2, . . . , Gn. Denote by Qij the probability that a child learner will acquire
grammar Gj when exposed to sample sentences generated by a parent speaking
Gi. The linguistic data available to the child and the acquisition algorithm
determine Q. Imperfect learning means that Qii < 1 for at least some i, which
implies that sometimes the learner will end up with a different grammar. As a
simplifying assumption, the Q matrix is taken to be constant in time. Hence,
it most accurately reflects scenarios such an isolated population or one subject
to a constant level of contact, and is of limited use when learning probabilities
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are fluctuating.
Consider a large, well-mixed population where each individual speaks one of

the grammars G1, G2, . . . , Gn. The fraction of the population that speaks Gi is
denoted xi. We have

∑

i xi = 1. The population is subject to natural selection:
Individuals derive a benefit from communicating successfully with each other.
Let us define a payoff matrix B, where Bij is the benefit to a speaker of Gi

from an encounter with a speaker of Gj . The entries of this matrix may include
effects such as the benefit of correct communication, cost of ambiguity, and so
forth. A natural assumption is that people communicate best with others who
have the same grammar. In this case, B is diagonally dominant, which implies
that each grammar is a strict Nash equilibrium. With perfect learning, each
language would then be an evolutionarily stable equilibrium.

The fitness associated with grammar Gj is the weighted average payoff Fj =
∑

k Bjkxk. Here we make the simplifying assumption that communication is the
dominant source of fitness, thereby incorporating selection in favor of individuals
who communicate well.

The average fitness of the population is given by φ =
∑

j Fjxj . The language
dynamical equation is given by

ẋj =

n
∑

i=1

FixiQij − φxj , j = 1 . . . n. (1)

This system can be interpreted as a replicator (or game dynamical) equation
(Hofbauer & Sigmund, 1998) with learning or mutation (Stadler & Schuster,
1992). The standard replicator equation is obtained in the limit of perfect learn-
ing. Furthermore, there is a correspondence between (1) and the Price equa-
tion, which is a general description of evolutionary dynamics (Page & Nowak,
2002; Price, 1972). Equation (1) can also be formulated to describe competition
among multiple UGs (Mitchener & Nowak, 2003).

3 Limit cycles and chaos

As a specific example, let us consider the following payoff matrix for a case of
three grammars.

B =





0.88 0.2 0.2
0.2 0.88 0.2
0.2 0.2 0.88



 . (2)

All grammars are equally good. For perfect learning, this payoff matrix leads to
very simple dynamics: All trajectories converge to one of three stable equilibria
where the whole population speaks the same language.

Imperfect learning, however, can induce very different behavior. For exam-
ple, let us consider the following learning matrix in conjunction with (2):

Q =





0.79 0.2 0.01
0.01 0.79 0.2
0.2 0.01 0.79



 .
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For each grammar, the most likely outcome of the learning process is the correct
grammar, and there is one second-most-likely outcome. As shown in Figure 1a,
these parameters produce stable oscillations, as learning errors in the subpopu-
lation speaking G1 feed into G2, and G2 feeds into G3, and G3 feeds back into
G1. This cycle is suggestive of the morphology type cycle. Note that stable
limit cycles such as this are impossible for 3-dimensional replicator equations
(Hofbauer & Sigmund, 1998, p. 78).

If learning becomes less accurate, then the limit cycle breaks down, resulting
in a spiral sink, as shown in Figure 1b.

This spiral opens the way for more complex behavior, as it can be used to
construct a period doubling cascade similar to Šilnikov’s mechanism (Gucken-
heimer & Holmes, 1990): We add two more grammars, and set up the learning
matrix so that the spiral sink is unstable in the new dimensions. We fix B as
follows:

B =













0.88 0.2 0.2 0 0.3
0.2 0.88 0.2 0 0.3
0.2 0.2 0.88 0 0.3
0.3 0.3 0.3 0.88 0
0 0 0 0.3 0.88













. (3)

Thus, we consider 5 languages, each of which is a strict Nash equilibrium. For
perfect learning, there would again be stable equilibria where all individuals
speak the same language. Instead of perfect learning, let us consider a one
parameter family of Q matrices:

Q =













0.75 0.2 0.01 0.04 0
0.01 0.75 0.2 0.04 0
0.2 0.01 0.75 0.04 0
0 0 0 µ 1− µ

1− µ 0 0 0 µ













. (4)

The parameter µ denotes the learning accuracy of grammars G4 and G5. For ap-
propriate choices of µ, trajectories can escape from the middle of the G1, G2, G3

spiral. The population slowly leaks into G4, then into G5, and back into G1

to return to the spiral. Varying µ alters how trajectories escape the spiral.
The result is a limit cycle in four dimensions that can undergo period-doubling
bifurcations that lead to chaos, as shown in Figure 2.

4 Discussion and Conclusion

Much of the existing literature on language models focuses on equilibrium be-
havior, modeling the fact that languages are generally stable on time scales of
about a century. In contrast, the behaviors displayed here attempt to capture
two important features observed in changing languages. First, some language
change arises from reanalysis and variation among speakers, and follows regular
patterns; examples are lenition, vowel shifts, and changes of morphology type.
Thus, for time scales on the order of several centuries, the oscillations discussed
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here appear to be more realistic than stable equilibria as in (Mitchener, 2003).
Second, language change is unpredictable and highly sensitive to perturbations.
Many changes, particularly those associated with borrowed vocabulary, are trig-
gered by language contact. The same kind of unpredictability and sensitivity is
exhibited by chaotic dynamical systems.

It is known that the game dynamical equation for four or more dimensions
can generate limit cycles and chaos (Nowak & Sigmund, 1993; Stadler & Schus-
ter, 1992). In contrast, the present example of chaos is not caused by game
dynamics, but rather by learning errors.

Briscoe (2000) has proposed an agent-based model for language acquisition
and evolution. He uses a specific, detailed learning algorithm and UG mo-
tivated directly by linguistic research. With the intent of producing a more
mathematically tractable model, the formulation of (1) assumes a larger popu-
lation where individual-level details influence the dynamics through aggregate
effects. It would be a fascinating task to express Briscoe’s model in terms of (1)
and study the possible range of evolutionary dynamics.

In summary, the language dynamical equation is a game dynamical equation
with learning. Here, we show that complex limit cycles and chaos can arise even
for very simple choices of the payoff and the learning matrices. In our example,
we considered five languages (strategies), each of which is a strict Nash equilib-
rium. Pure game dynamics would have five stable equilibria corresponding to
linguistically homogeneous populations. However, a carefully structured learn-
ing matrix is sufficient to induce chaos. Thus, very conservative, natural choices
of payoff and learning matrices lead to deterministic chaos.

Our analysis has implications for historical linguistics, language evolution
and evolutionary game theory. Simple learning errors can lead to complex,
unpredictable and seemingly stochastic changes in languages over time. For
game dynamics, we note that imperfect learning can lead to chaotic switching
among strict Nash equilibria.
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(a)
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G3

Q =





0.79 0.2 0.01
0.01 0.79 0.2
0.2 0.01 0.79





(b)

G1 G2

G3

Q =





0.76 0.2 0.04
0.04 0.76 0.2
0.2 0.04 0.76





B =





0.88 0.2 0.2
0.2 0.88 0.2
0.2 0.2 0.88





Figure 1: (a) A stable limit cycle. The oscillations are caused by the learning
algorithm. Errors from children learning G1 feed into G2, and G2 feeds into G3,
and G3 feeds back into G1. (b) A spiral sink that results from the limit cycle in
(a) when the Q matrix is changed as shown. The B matrix is common to both
figures.
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Figure 2: (a) Cascade diagram. The horizontal axis shows a range of values of
µ. For each value of µ, an orbit is traced. Each time x4 crosses 0.19, a dot is
plotted at (µ, x1). Sample orbits are drawn for the three values of µ indicated
by arrows. (b) When µ = 0.75, there are two dots representing two extremes
of this stable limit cycle. (c) When µ = 0.7475, there are twice as many dots
because the limit cycle has undergone a period doubling bifurcation. (d) For
µ = 0.735, the orbit appears to be chaotic.
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