Simulating the Evolution of Regulatory Networks

W. Garrett Mitchener

College of Charleston

March 15, 2013
(1) Regulatory networks

(2) Simulated evolution

(3) Rare events

Regulatory networks

Artificial life is difficult

Artificial life is difficult

So I made a toy

So I made a toy

Agents, their job, \& their brains

Agents, their job, \& their brains

Agents, their job, \& their brains

$A[8] \geq 1 \Rightarrow \operatorname{inc} A[3], \operatorname{dec} A[5]$

(1) Regulatory networks

(2) Simulated evolution

Selection-mutation processes

Selection-mutation processes

Selection-mutation processes

Punctuated equilibrium

Perfect solution

Time for last innovation

(1) Regulatory networks

(2) Simulated evolution

(3) Rare events

Waiting for a rare event

Waiting for a rare event

Waiting for a rare event

- Time steps $t=0,1,2, \ldots$

Waiting for a rare event

- Time steps $t=0,1,2, \ldots$
- All independent

Waiting for a rare event

- Time steps $t=0,1,2, \ldots$
- All independent
- Waiting for a rare event

Waiting for a rare event

- Time steps $t=0,1,2, \ldots$
- All independent
- Waiting for a rare event
- $q=$ probability that it happens each time step

Waiting for a rare event

- Time steps $t=0,1,2, \ldots$
- All independent
- Waiting for a rare event
- $q=$ probability that it happens each time step
- q is small, think $1 / 100$

Waiting for a rare event

- Time steps $t=0,1,2, \ldots$
- All independent
- Waiting for a rare event
- $q=$ probability that it happens each time step
- q is small, think $1 / 100$
- When does it first happen?

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=$?

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=$?
- $\mathbf{P}($ doesn't happen at $t=0)=1-q$

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=$?
- $\mathbf{P}($ doesn't happen at $t=0)=1-q$
- $\mathbf{P}($ does happen at $t=1)=q$

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=$?
- $\mathbf{P}($ doesn't happen at $t=0)=1-q$
- $\mathbf{P}($ does happen at $t=1)=q$
- $\mathbf{P}($ first happens at $t=1)=(1-q) q$

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=(1-q) q$

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=(1-q) q$
- $\mathbf{P}($ first happens at $t=2)=$?

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=(1-q) q$
- $\mathbf{P}($ first happens at $t=2)=$?
- $\mathbf{P}($ doesn't happen at $t=0)=1-q$

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=(1-q) q$
- $\mathbf{P}($ first happens at $t=2)=$?
- $\mathbf{P}($ doesn't happen at $t=0)=1-q$
- $\mathbf{P}($ doesn't happen at $t=1)=1-q$

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=(1-q) q$
- $\mathbf{P}($ first happens at $t=2)=$?
- $\mathbf{P}($ doesn't happen at $t=0)=1-q$
- $\mathbf{P}($ doesn't happen at $t=1)=1-q$
- $\mathbf{P}($ does happen at $t=2)=q$

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=(1-q) q$
- $\mathbf{P}($ first happens at $t=2)=$?
- $\mathbf{P}($ doesn't happen at $t=0)=1-q$
- $\mathbf{P}($ doesn't happen at $t=1)=1-q$
- $\mathbf{P}($ does happen at $t=2)=q$
- $\mathbf{P}($ first happens at $t=2)=(1-q)^{2} q$

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=(1-q) q$
- $\mathbf{P}($ first happens at $t=2)=(1-q)^{2} q$

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=(1-q) q$
- $\mathbf{P}($ first happens at $t=2)=(1-q)^{2} q$

Waiting for a rare event

- $\mathbf{P}($ happens at this step $)=q$
- $\mathbf{P}($ first happens at $t=0)=q$
- $\mathbf{P}($ first happens at $t=1)=(1-q) q$
- $\mathbf{P}($ first happens at $t=2)=(1-q)^{2} q$
- $\mathbf{P}($ first happens at $t)=(1-q)^{t} q$
- Doesn't happen on steps $0,1, \ldots t-1$
- Does happen on step t

Geometric distribution

$$
\begin{aligned}
& f(t)=\mathbf{P}(\text { first happens at } t) \\
& f(t)=(1-q)^{t} q
\end{aligned}
$$

Geometric distribution

$$
\begin{aligned}
f(t) & =(1-q)^{t} q \\
\ln (f(t)) & =\ln \left((1-q)^{t} q\right)=t \ln (1-q)+\ln (q)
\end{aligned}
$$

Time for last innovation

Conclusion

- Distribution of time for last innovation isn't geometric
- Biased toward smaller times
- More likely to happen shortly after next-to-last innovation
- Some kind of memory effect?

Garrett Mitchener

http://mitchenerg.people.cofc.edu
mitchenerg@cofc.edu

