Ranking with Hamiltonian dynamics

W. Garrett Mitchener

College of Charleston

September 6, 2020
Ranking problems

Given

- Items x_1, x_2, \ldots, x_n,

- Weighted comparison matrix W

 Entry w_{jk} indicates how strongly x_j should be placed before x_k

find a permutation τ that gives a linear ordering

$$x_{\tau(1)}, x_{\tau(2)}, \ldots$$

that is as consistent as possible with W
Solution methods

- Brute force
- Heuristics
- Integer program
- RankBoost
- Dynamical systems
Goals

- Develop theory and practical algorithms for ranking
- Develop notion of *rankability*
- Develop interesting dynamical systems
Ranking potential

\[R(q; W, \gamma_r) = \sum_{j,k} w_{jk} e^{\gamma_r \cdot (q_j - q_k)} \]

- \(q_j \): position of particle \(j \)
- \(\gamma_r \): scaling parameter

Seek system states such that \(R(q) \) is low
Ranking potential

\[R(q; W, \gamma_r) = \sum_{j,k} w_{jk} e^{\gamma_r (q_j - q_k)} \]

- \(q_j \): position of particle \(j \)
- \(\gamma_r \): scaling parameter

Seek system states such that \(R(q) \) is low
Hamiltonian dynamics

Confinement potential

\[C(q; \gamma_c) = \sum_j \cosh(\gamma_c q_j) \]

Hamiltonian

\[H = \frac{1}{2} \sum_j p_j^2 + \alpha_r R(q) + \alpha_c C(q) \]

- \(\gamma_c \): scaling parameter
- \(\alpha_r, \alpha_c \): risk-regularity balance parameters
Toda lattice

\[W = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\vdots & \vdots & & \ddots
\end{pmatrix} \]

1 → 2 → 3 → …
Toda trajectories
Flaschka’s change of variables

\[b_j = -\frac{1}{2} p_j \]
\[a_{jk} = \frac{1}{2} \exp \left(\frac{1}{2} (q_j - q_k) \right) \text{ if } k = j + 1 \]

\[
A = \begin{pmatrix}
0 & a_{12} & 0 & 0 \\
0 & 0 & a_{23} & 0 \\
0 & 0 & 0 & a_{34} \\
\vdots & & & \ddots
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
b_1 & 0 & 0 \\
0 & b_2 & 0 \\
0 & 0 & b_3 \\
\vdots & & \ddots
\end{pmatrix}
\]
Lax pair and isospectral flow

- $L = A + A^T + B$
- $M = A - A^T$

$$\dot{L} = [M, L] = ML - LM$$
Lax pair and isospectral flow

Eigenvalues of L conserved

\[
H = \frac{1}{2} \text{tr} L^2 = \sum_j b_j^2 + \sum_{j,k} w_{jk} a_{jk}^2
\]

\[
\propto \sum_j p_j^2 + \sum_{j,k} w_{jk} e^{q_j - q_k}
\]
Generalized W

\[
A = \begin{pmatrix}
0 & \sqrt{w_{12}} a_{12} - i \sqrt{w_{21}} a_{21} & \sqrt{w_{13}} a_{13} - i \sqrt{w_{31}} a_{31} & \cdots \\
0 & 0 & \sqrt{w_{23}} a_{23} - i \sqrt{w_{32}} a_{32} & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
 b_1 & 0 & \cdots \\
0 & b_2 & \cdots \\
\vdots & \vdots & \ddots
\end{pmatrix}
\]

\[M = A - A^*\]
\[L = A + A^* + B\]
Generalized W

Why that particular A and B?

- Give up on p’s and q’s
Generalized W

Why that particular A and B?

- Give up on p’s and q’s
- $X_2 = \frac{1}{2} \text{tr} \ L^2$ is still conserved

$$X_2 = \frac{1}{2} \sum_j b_j^2 + \sum_{j,k} w_{jk} a_{jk}^2$$
Generalized W

Why that particular A and B?

- Give up on p’s and q’s
- $X_2 = \frac{1}{2} \text{tr } L^2$ is still conserved
- Dynamics independent of renumbering
Generalized W

Why that particular A and B?

- Give up on p's and q's
- $X_2 = \frac{1}{2} \text{tr } L^2$ is still conserved
- Dynamics independent of renumbering
- All $a_{jk} \rightarrow 0$ as $t \rightarrow \infty$
- b_j converges to j-th eigenvalue
- No apparent ordering information
Back to real particle dynamics

\[R(q; W, \gamma_r) = \sum_{j,k} w_{jk} e^{\gamma_r (q_j - q_k)} \]

\[C(q; \gamma_c) = \sum_j \cosh (\gamma_c q_j) \]

\[H = \frac{1}{2} \sum_j p_j^2 + \alpha_r R(q) + \alpha_c C(q) \]
Rankings from trajectories

- Estimate trajectory $q(t), p(t)$ for $t \in [0, T]$
- Choose position vector q
 Permutation τ: sort elements of q
Rankings from trajectories

- Estimate trajectory $q(t), p(t)$ for $t \in [0, T]$

- Choose position vector q
 - Permutation τ: sort elements of q

- Trajectory minimum ranking potential:
 \[
 q^{\text{TMR}} = \text{minimize } R(q(t))
 \]

- Average integral:
 \[
 q^{\text{AI}} = \frac{1}{T} \int_{0}^{T} q(t) \, dt
 \]
Low-dimensional examples
Complete tournament

[Diagram of a complete tournament with nodes 1, 2, 3, and 4 connected in a cycle]

[W. Garrett Mitchener (C of C) Ranking with Hamiltonian dynamics September 6, 2020 19/35]
Cycle

W. Garrett Mitchener (C of C)
Ranking with Hamiltonian dynamics
September 6, 2020 20/35
Cycle and one more
Synthetic data

- Define a strength s_j for each item x_j
- Probability $x_j < x_k$:

 $$P(j, k) = \frac{1}{1 + e^{\beta(s_j - s_k)}}$$

- Low $\beta \iff$ more upsets
Synthetic data

- Define a strength s_j for each item x_j

- Probability $x_j < x_k$:

$$P(j, k) = \frac{1}{1 + e^{\beta(s_j - s_k)}}$$

- Low $\beta \iff$ more upsets

- Linear: $s = (1, 2, 3, \ldots)$

- Two groups: $s = (0, 0, \ldots, 1, 1, \ldots)$

- Unordered: $s = (0, 0, \ldots)$
Evaluating an ordering

- Ranking potential: $R(q)
- Tournament score:
 $$TS(\tau; W) = \sum_{\tau(j) < \tau(k)} w_{jk}$$
- Inversion count:
 Assuming correct order is x_1, x_2, \ldots
 How many swaps to bubble sort τ?

W. Garrett Mitchener (C of C)
Ranking potential: Linear strengths, $\beta = 0.5$

Lower R should be better

Paired t-tests, 95% confidence intervals:

Strongest to weakest:

Trajectory minimum R, Average integral
Tournament scores: Linear strengths, $\beta = 0.5$

High tournament score means better

Paired t-tests, 95% confidence intervals:

- Traj min R minus Avg intg: $(-0.5882, -0.4358)$
- Traj min R minus RankBoost: $(0.4528, 0.6212)$
- Avg intg minus RankBoost: $(0.9574, 1.1406)$

Strongest to weakest:

Average integral, Trajectory minimum R, RankBoost
Inversion counts: Linear strengths, $\beta = 0.5$

Low inversion count means better

Paired t-tests, 95% confidence intervals:

- Traj min R minus Avg intg: $(-0.1749, -0.0051)$
- Traj min R minus RankBoost: $(-0.519, -0.347)$
- Avg intg minus RankBoost: $(-0.4394, -0.2466)$

Strongest to weakest:

Trajectory minimum R, Average integral, RankBoost
But...

- When $\beta = 0.25$, Trajectory min R achieves higher TS and lower IC than Average integral.
- When $\beta = 1.0$, RankBoost achieves lower IC than Average integral.

Overall the three algorithms are roughly comparable.
Rankability

Unordered

Two groups

Linear
Rankability measured by spread

Spread: $q_N - q_1$
Synthetic data

- Define a strength s_j for each item x_j
- Probability $x_j < x_k$:
 $$P(j, k) = \frac{1}{1 + e^{\beta(s_j - s_k)}}$$
- Low β \iff more upsets
- Linear: $s = (1, 2, 3, \ldots)$
- Two groups: $s = (0, 0, \ldots, 1, 1, \ldots)$
- Unordered: $s = (0, 0, \ldots)$
Spread for Average integral

- linear
- two groups
- unordered

spread

\(\beta \)
NFL season, 2018-19

Use Average integral, rate teams based on regular season point spreads:
NFL season, 2018-19, playoffs

<table>
<thead>
<tr>
<th></th>
<th>Team 1</th>
<th>Team 2</th>
<th>(x_j - x_k)</th>
<th>TMR</th>
<th>AI</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HOU</td>
<td>IND</td>
<td>-14</td>
<td>.025</td>
<td>.142</td>
<td>.135</td>
</tr>
<tr>
<td>2</td>
<td>DAL</td>
<td>SEA</td>
<td>2</td>
<td>-.201</td>
<td>-.195</td>
<td>-.198</td>
</tr>
<tr>
<td>3</td>
<td>BAL</td>
<td>LAC</td>
<td>-6</td>
<td>.008</td>
<td>-.074</td>
<td>-.058</td>
</tr>
<tr>
<td>4</td>
<td>CHI</td>
<td>PHI</td>
<td>-1</td>
<td>.336</td>
<td>.201</td>
<td>.204</td>
</tr>
<tr>
<td>5</td>
<td>KC</td>
<td>IND</td>
<td>18</td>
<td>.177</td>
<td>.322</td>
<td>.322</td>
</tr>
<tr>
<td>6</td>
<td>LA</td>
<td>DAL</td>
<td>8</td>
<td>.344</td>
<td>.277</td>
<td>.256</td>
</tr>
<tr>
<td>7</td>
<td>NE</td>
<td>LAC</td>
<td>13</td>
<td>-.011</td>
<td>-.199</td>
<td>-.180</td>
</tr>
<tr>
<td>8</td>
<td>NO</td>
<td>PHI</td>
<td>6</td>
<td>.369</td>
<td>.284</td>
<td>.285</td>
</tr>
<tr>
<td>9</td>
<td>NO</td>
<td>LA</td>
<td>-3</td>
<td>.046</td>
<td>.022</td>
<td>.041</td>
</tr>
<tr>
<td>10</td>
<td>KC</td>
<td>NE</td>
<td>-6</td>
<td>.144</td>
<td>.321</td>
<td>.332</td>
</tr>
<tr>
<td>11</td>
<td>LA</td>
<td>NE</td>
<td>-10</td>
<td>.124</td>
<td>.245</td>
<td>.224</td>
</tr>
</tbody>
</table>

W. Garrett Mitchener (C of C)
Ranking with Hamiltonian dynamics
September 6, 2020
Page 33

Conclusion

- Hamiltonian dynamics with ranking potential
- Connected to the Toda lattice
- Rank items using low R particle configurations (TMR)
- Rank items using average positions (AI)
- Results comparable to RankBoost
- Spread yields confidence, rankability
Contact information

W. Garrett Mitchener

http://mitchenerg.people.cofc.edu

mitchenerg@cofc.edu

Article to appear in Physica D
https://doi.org/10.1016/j.physd.2020.132676
https://authors.elsevier.com/a/1bc2pc2Eea5GM