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The problem that led to this project was a result from Plotkin and Nowak [2000], in
which an inequality from information theory puts an upper bound on the fitness of
a communication system with a one-to-one mapping of signal to meaning. If there
are enough topics of conversation, switching to a sequential coding system (string-
of-signals to one meaning) yields a fitness advantage that overcomes that bound.
See also Zuidema and de Boer [2009]. Evolutionary game theory can explain the
survival and spread of such a system, but not its origin from organisms that do not
have it.

The basis of biological computation is the reaction or regulatory network. How are
such networks discovered by selection-mutation processes?

The Utrecht Machine (UM) is a discrete abstraction of a gene regulatory network.
For this project, an evolutionary simulation is used to discover UM-based agents
that solve a data encoding problem. Details of the selection process have a signifi-
cant impact on population dynamics: Weak selection leads to shorter overall times
to first perfect solution, shorter genomes, fewer repairs to auxiliary mechanisms
after an improvement to the main mechanism, and fewer atypical synaptic codes,
and is more likely to discover improved partial solutions by breeding outliers. The
times at which key innovations appear and spread depends on the population state
in surprising ways.

FYI: I call it the Utrecht Machine because the conference where I first presented it was

EvoLang 2010 in Utrecht.



Traditional population genetics

Abstracts away the gene
regulatory network.
Models the genotype as a
list of alleles, mapped to a
numerical fitness for the
phenotype. Markovian &
memoryless.
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Systems biology

Genes produce functional
products (enzymes, etc.)
but also regulatory
products that promote or
repress other genes.
Complex networks of
interacting molecules.
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Population game dynamics: replicator-mutator

(1) ẋj =

K∑
k=1

xkFkQkj − xjφ

• k = 1, 2, . . .K: types of individuals
• xk = fraction of population of type k
• Bkj = payoff for type k interacting with type j
• F = Bx: vector of average payoffs by type
• φ = xTF: overall average payoff
• Qkj = probability offspring of type k is type j

Population genetics: Moran-Mendel

The population is finite. Dynamics form a Markov chain: Kill one agent uni-
formly, replace by cloning another chosen in proportion to fitness.

• A1,A2, . . . ;B1,B2 . . . : alleles at loci A & B

• Phi, . . . : prob of mutation from Ah to Ai . . .
• Fj1j2k1k2 = fitness of genotype Aj1Aj2Bk1Bk2



How to combine selection-mutation population
dynamics with relevant molecular details?

• Genome = inherited record of instructions:
Should be a string of letters, subject to mutation and recombination like DNA

• Virtual machine = how to build the phenotype:
Should be an artificial regulatory network

The Utrecht Machine or UM is designed to meet those requirements. The state of
the UM is a table mapping patterns p to integer activation levels Ap. Each pattern
is metaphorically a protein that binds to a promoter or inhibitor sequence on DNA.
The activation level of a pattern is how many units of it are present.

Each UM reaction instruction [As > θ =⇒ incAp, decAq] is parameterized by four
integers: a switch pattern s, a threshold θ, a pattern p to activate called p-up, and
a pattern q to inhibit called p-down. An instruction is active if the activation level of
its switch pattern As satisfies As > θ. An active instruction adds 1 to the activation
of its p-up pattern and subtracts 1 from the activation of its p-down pattern. All
active instructions are performed simultaneously.

A bit of input is provided by increasing the activation of a particular pattern during
each time step the input bit is set.



Example: UM for binary NAND
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Network representation, essentials only b0 b1 ¬(b0 ∧ b1)
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A0 > 0 =⇒ incA0, decA7

A1 > 0 =⇒ incA6, decA7

A2 > 0 =⇒ incA6, decA7

A4 > 1 =⇒ incA7, decA6

A5 > 1 =⇒ incA7, decA6

Two bits of input supplied through patterns 4 and 5, one bit of output read as
1(A6 > 3). Stop when A0 > 4 or after a maximum of 10 time steps.

UM reaction instructions are just tuples of 4 integers, and their effects are indepen-
dent of the order in which they are listed. They can therefore be encoded as a binary
genome and subject to biologically realistic mutation and recombination.



Building the network representation

Output

0

06

4

3

6

1

7

6

2

7

7

4

6

0 7

7

5

6

0

0

0

0

1

1

0

0

1

1

4

5

Input

0

1

One link for each. . .

• input bit

• output bit

• stop signal

Each instruction
generates two links
from the switch
pattern node: one for
p-up, one for p-down.

Links for p-up, input, & output are solid with black arrowhead. Links for p-
down are dashed with white arrowhead. Pattern nodes are circular for most
patterns, keystones for those involved with input and output. Numbers on links
indicate a threshold. A link with no number is activated by an input bit instead
of a threshold.



Reduction from full to essential network

Network representation, all details
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Merge pattern nodes, layout so that infor-
mation mostly flows left to right.

Trim non-essential details...

does not affect output

switch pattern irrelevant

Remove pattern nodes that don’t mat-
ter, like 7, which is used as a no-op or bit
bucket in this machine. Turn nodes where
the pattern doesn’t really matter into dia-
monds. This happens to patterns 0, 1 and 2
because all instructions with these for the
switch pattern happen to always be active.
Then neaten up the layout.



Example: NAND with genome and step-by-step interface

0 0 0 7

1 0 6 7

2 0 6 7

4 1 7 6

5 1 7 6

genome bits

instruction bits

instruction integers

input / output bits

activation levels

pointer to next instruction

time

switch pattern

threshold p-up
p-down

Triples of genome bits are decoded using majority-of-three into instruction bits,
which are read left-to-right as the binary representations of integers.



Why the extra genome encoding layer, majority-of-three?
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Picture by Kosi Gramatikoff and Seth Miller, posted on Wikipedia

The natural genetic code maps 64
three-letter codons to 20 or so amino acids
plus a few control codes. Most amino acids
are represented by several synonymous
codons. Some of these codons are robust in
that substitution mutations are likely to
result in another synonymous codon,
leaving the resulting protein unchanged.
Ex: CUU CUC, both code for leucine.
Other codons are fragile in that they are
more likely to mutate to a different amino
acid. Ex: UUA UUC switches from
leucine to phenylalanine. An excess of
fragile codons is thought to be evidence
that a gene has recently been subject to
selection [Plotkin and Kudla, 2011]. The
majority-of-three encoding in the simulation
is so that a future project can address this
phenomenon.



Recombination via haploid crossover

Agents in the simulation have a single chro-
mosome. They reproduce in pairs. The
genomes are aligned at the beginning and
split at a random location. The first part of
one (blue) is attached to the second part of
the other (red) to form the offspring genome.

Supported mutations

1 0 0 1 → 1 1 0 1
single bit substitutions
prob 0.005 per genome bit

→ ✂

gene (instruction) deletion
prob 0.001 per gene

→
gene (instruction) duplication
prob 0.001 per gene



Experimental task: Transmit 2 bits over time

We use a selection-mutation process to evolve solutions to a sequential coding prob-
lem. A genome is built into an agent follows: Two UMs are built from the genome,
one sender and one receiver. The sender gets two bits of input, plus constant input
into its role pattern 1. The receiver must generate two bits of output that reproduce
the input, and signal when to stop. The receiver gets input from the sender through
a single synapse, plus constant input into its role pattern 2.

Sketch of agent & scoring details
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Each agent is presented with all
four possible input words 〈00〉, 〈10〉,
〈01〉, 〈11〉, starting at a zero state
for each and running for up to 100
time steps. It earns 10, 000 points for
each bit correctly transmitted, plus
100 − max(20, t) each time it stops af-
ter t steps. Maximum possible score:
10, 000× 4× 2 + 80× 4 = 80, 320.



Selection protocols

...

Agents are sorted in descending order by score. Then 300 new
agents are created as follows: k1 new agents are created by breed-
ing pairs selected uniformly at random from among the top h1, then
k2 are bred from the top h2, . . . . New agents are added to the top*
of the list, and agents on the bottom are killed to maintain a con-
stant population of 500. The list is re-sorted, preserving the original
order* in case of a tie.

*These details prevent stagnation.

Selection strengths:

Protocol name (h1,k1), (h2,k2) . . .

Very weak (300, 500)—all agents breed equally
Weak (100, 200), (500, 100)

Strong (100, 300)—only top 100 breed
Very strong (10, 300)—only top 10 breed

Even under very weak selection there is still some selection because agents with
low ratings are more likely to end up at the bottom of the list and die. All of these
protocols eventually yield maximum-scoring solutions starting from an initial popu-
lation of 500 genomes each with 32 genes generated uniformly at random. Patterns
have six bits (0-63) and thresholds have four bits (0-15). Each gene has 22 instruc-
tion bits, which are encoded by majority-of-three as 66 genome bits.



Example solution to bit transmission problem
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synapse turned on
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Synaptic code
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Typical synaptic code:

〈00〉 is represented by
never activating the
synapse. 〈11〉 is
represented by very
early activation of the
synapse. 〈10〉 and 〈01〉
are represented by
intermediate activation
times. This code is
typical of solutions
evolved by the
simulation.

• Chicken-and-egg problem solved incrementally

• Timing mechanism entangled with other mechanisms

• Spurious but harmless activation of receiver mechanism in sender

• Recombination assembles new combinations of genes, discovers better net-
works, often from sub-optimal parents



Rating vs. time
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Maximum rating as a func-
tion of agent ID number.
Agents are numbered as
they are born, so ID number
measures time. Large jumps
occur at each major innova-
tion, that is, when an agent
appears that transmits an
additional bit correctly. Re-
ductions in time spent yield
smaller jumps, shown as
inserts.

Typical trajectory is as follows: (1) Initially, most agents always output 〈00〉, scoring
40, 000 = half credit. (2) Recombination joins a link from one input bit directly to
the synapse with a link from the synapse directly to the corresponding output bit,
scoring 60, 000. (3) A sender mechanism appears that generates a fully informative
synaptic code, but no benefit is realized until. . . (4) A mechanism appears that con-
nects to the other output bit, scoring 70, 000. (5) Some sort of complex mechanism
is finally discovered that transmits all 8 bits correctly. After each major innovation,
the timing mechanism may need to be repaired to get the other 320 points.



Distribution of ratings by generation
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Upper row: Stacked bar chart of counts of agents whose
score is between 10, 000n and 10, 000(n + 1) in each genera-
tion for 50 generations after each major innovation.
Lower row: Log-scale plot of count of agents whose score
is nearly maximal in each generation for 50 generations af-
ter each major innovation. (That is, the count in the highest
corresponding sub-bar in the chart above it.)

Each major innovation is more difficult than the previous ones. When an agent that
can transmit an additional bit appears, that ability spreads exponentially, but for
higher-scoring innovations, the initial delay is longer, the growth rate is lower, and
the equilibrium fraction of high-scoring agents is lower.



Varying selection strength

Increasing selection strength reduces the number of agents that can reproduce,
which has some counter-intuitive consequences. Aggregating observations from
10, 000 runs of the simulation:

Log length of genome

1.4 1.6 1.8 2.0 2.2 2.4

V. Weak

Weak

Strong

V. Strong

Log agent ID

4.5 5.0 5.5 6.0 6.5 7.0

V. Weak

Weak

Strong

V. Strong

Distributions of the log10 length of the genome (left) and ID number (right) of the
first agent in each sample run to achieve the maximum score. Bands indicate
deciles. The correlation is imperfect, but in general stronger selection leads to
longer genomes, and more agents searched (= more search time).



Unscaled distribution charts

Length of genome
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Distributions of unscaled genome length and agent ID number. Bands indicate
deciles. A few especially long genomes and long-running samples draw out the
uppermost decile.



Innovations through outliers

During the long equilibrium phases, most of the
population hovers near the peak of a ridge in
the fitness landscape. Genetic diversity ensures
that there are always a few outliers that don’t
achieve the highest score present in the popu-
lation at that time. But they are more likely to
be near the edge of the zone of attraction of the
ridge, in which case their offspring are more
likely to jump to another ridge—an innovation.

In weaker protocols, there are
more samples with at least one
major innovation where at least
one parent was an outlier. This
phenomenon appears to be a
consequence of the fact that
weaker selection maintains
greater diversity. V. Weak Weak Strong V. Strong
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Typical vs. atypical synaptic codes

Example atypical synaptic codes:
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Most solutions use typical
synaptic codes something like
the example solution. But 5-
20% of solutions end up with
something very different, and
often with much more complex
mechanisms.

In stronger protocols, a greater
fraction of runs settle on atyp-
ical synaptic codes. Possibly,
the reduced diversity associ-
ated with stronger selection
increases the likelihood that
the population gets trapped in
a ridge with a smaller zone of
attraction, which yields more
atypical results.
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Timing repairs

V. Weak
6 7 8

Weak
6 7 8

Strong
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20
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100 Percent of runs that required repair or tweak-
ing of the timing mechanism after the inno-
vation that enables the transmission of an
additional bit: The height of the bar over n is
the percent of runs that jump from a rating of
10, 000n + 320 to between 10, 000(n + 1) and
10, 000(n+ 1) + 319.

Frequently, a mutation that improves the bit transmission mechanism disrupts
the timing mechanism, sometimes stealing part of its structure. Such an event
yields a jump of just under 10, 000 in score, followed by minor jumps that re-
store the additional 320 timing points. Almost all runs have to repair (or ini-
tially discover) the timing mechanism after the first major innovation, but only
10-40% do so after the others. The very strong selection protocol has to make
the most repairs, but the trend is imperfect: the very weak protocol makes
more repairs than the weak and strong protocols after the innovation at n = 7.
This means that it is not at all unusual (1) for evolution to sacrifice one func-
tional mechanism to build another, and (2) for the resulting mechanisms to be
entangled.



Time for last major innovation
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Upper row: Log-scale PDF histogram of number of agents searched between
next-to-last and last major innovation. Lower row: Hazard function histogram
of the same.

In traditional population dynamics, mutations are modeled with a Markov
chain: An allele Aj in a parent mutates to Ak in a child with a probability that
depends only on j and k. Starting from a population of all Aj, the time to first
appearance of Ak is approximately exponentially distributed. However, in the
simulation, the time required for the last major innovation (jump from a maxi-
mum rating of 70, 000± to 80, 000) is not exponentially distributed: Its PDF is
not linear on a log plot, and its hazard function is not constant.



Hazard function

For a random variable T with density function f and cumulative distribution
function F, the hazard function is

h(t) = lim
∆t→0

P (t 6 T 6 T + ∆t | T > t)
∆t

=
f(t)

P (T > t)
=

f(t)

1 − F(t)

The name comes from the idea that T is the time at which a device fails, so the
hazard function is the instantaneous failure rate of the device at time t given
that it has survived to time t. If T has an exponential distribution, a calculation
shows that its hazard function is a constant, equal to the reciprocal of its mean.



Discussion

These simulations show that the origin story must be complicated. What seems
to be happening: The population goes through periods of neutral drift and diver-
sification. Recombination tries many combinations of genetic variants of partially
successful genes, including those from parents that score lower than the current
maximum (epistasis). Innovations frequently take the form of entangled mecha-
nisms that often must be tuned or repaired.

Stronger selection results in generally longer genomes and greater search time.
There are also indications that it traps the population tightly near ridges in the
fitness landscape with small zones of attraction (fewer innovations through outliers,
more atypical synaptic codes). A possible explanation is that strong selection lowers
genetic diversity (founder effect).

The time between innovations is not exponentially distributed, which indicates
some memory effect: Shortly after one innovation, the population is more likely
to have another. Possibly during a selective sweep (time during which an innova-
tion is spreading) the population retains some diversity which increases the chance
of another innovation. If the sweep runs to completion, the process is reset and
becomes memoryless.



Next steps

• Find ways to measure diversity directly and check these possibilities. The
genomes are all different lengths with different amounts of space between
useful genes, so an alignment algorithm is needed to measure genotypic dis-
tances.

• Implement fully diploid genomes. This seems to be an important detail: Re-
combination may be more likely to find useful combinations of genes when
they are at a distance on the genome. Under haploid recombination, it is
likely that none of the offspring of such an individual will inherit both parts
because crossover will occur in between them. But with diploid recombina-
tion, roughly 1/4 of the offspring will inherit both parts.

• Model regulatory network formation more formally. This will require Markov
chains with huge state space.
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